
MS Analysis Seminar 1:
Bump Functions and Partitions of Unity

Ethan Lu

Feburary 11, 2020

1 Introduction

The goal of this handout is to explore how different decompositions of sets can lead to inter-
esting analytic and topologic structures, particularly centering around the idea of “locally
finite” decompositions.
Dual to how the improper Riemann integral is defined by taking the limit of integrals on
increasing intervals of R, this technology proves helpful in the definition of the extended
Riemann integral by breaking up functions into “increasing pieces.”

2 Locally Finite Covers

We start with the following theorem, which provides us with an explicit construction for
interesting covers of open sets.

Theorem 1. Let U =
⋃
m∈N Um ⊆ Rn all be open. Then there exists a collection of rectangles

{Ri}i∈N such that the following hold:

• U ⊆
⋃
i∈NR

◦
i .

• For all i ∈ N, there exists m ∈ N with Ri ⊆ Um.

• For all x ∈ U , there exists ε > 0 with B(x, ε) intersecting only finitely many Ri.

Proof. We start with the following lemma, which provides us with useful auxillary sets:

Lemma 1 (Exhaustion by Compact Sets). Suppose U is open. Then there exists a countable
collection {Ci}i∈N of compact sets such that A =

⋃
i∈NCi and Ci ⊆ C◦i+1 for all i.

Proof. First recall that given any X ⊆ Rn, the distance function dist(·, X) given by

dist(x,X) = inf
y∈X

d(x, y)

is well-defined and continuous. Now, for each i ∈ N, we can set

Ci = {x : dist(x, U c) ≥ 1/i}
⋂

B[0, i]
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which is clearly compact as the intersection of a closed set and a compact set.
We now check the two conditions as stated in the lemma. To see that the union of these sets
is equal to A, first observe that given any x ∈ Ci,

dist(x, U c) > 0 =⇒ x /∈ U c =⇒ x ∈ U =⇒ A ⊇
⋃
i∈N

Ci

and to see the reverse inclusion, observe that since U is open, given any x ∈ U , we may fix
ε > 0 with

B(x, ε) ⊆ U =⇒ dist(x, U c) > ε

so we may choose i ∈ N such that both 1/i < ε and i > d(0, x) hold to see that x ∈ Ci as
desired.
To see that these Ci nest in the desired fashion, simply note that

Ci ⊆ {x : d(x, U c) > 1/(i+ 1)}
⋂

B(0, i+ 1) ⊆ C◦i+1

where the second term is an intersection of open sets and hence open (and contained in C◦i+1)
as desired.

Now let Ci be as above, and for convenience put Ci = ∅ for i ≤ 0. For each i ∈ N we
now define Di = Ci \ C◦i−1. Observe that Di is bounded (as a subset of Ci) and closed (as
Ci ∩ (C◦i+1)

c) and hence compact. Furthermore, Di is completely disjoint from Ci−2 ⊆ C◦i−1.
Now for each x ∈ Di choose m with x ∈ Um and ε with B(x, ε) ⊆ Um ∩Cc

i−2. Then choosing
a rectangle Rx ⊆ B(x, ε) for every such x, we observe that {R◦x}x∈Di

is an open cover of Di.
Invoking compactness, we can now pass down to a finite {R◦j}j∈[n] covering Di. To conclude,
we then take the union of these (finite) collections over all i ∈ N to produce the desired
collection {Rj}j∈N.
Given this collection, we now check the desired properties. Clearly the first two hold, so we
only check the last one.
Let x ∈ U be arbitrary. Then x ∈ Ci−1 ⊆ C◦i for some i and we can choose ε > 0 with
B(x, ε) ⊆ C◦i . But by construction, all of C◦i can only have nontrivial intersection with the
rectangles covering D1, · · · , Di+2, which is a finite collection, so we’re done.

3 Bump Functions

In order to better “support” (haha) the covers we developed in the previous part, we now
quickly prove a couple results about the existence of C∞ “indicator functions” that’ll be
useful in our partitions of unity.

Theorem 2. Let R =
∏

i∈n[ai, bi]. Then there exists IR ∈ C∞(Rn;R) such that IR(x) > 0
for all x ∈ R◦ and 0 otherwise.

Proof. We’ll explicitly construct such a function in R, then use some coordinate trickery to
construct our desired function.
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Claim.

g : R→ R via g(x) =

{
e−1/x x > 0

0 otherwise

is C∞.

Proof. We’ll proceed by showing that for each n ∈ N that

gn(x) =

{
e−1/x/xn x > 0

0 otherwise

is continuous at 0. To do so, first recall that that α < eα for all α ∈ R. Setting α = t/2n,
we find that

t/2n < et/2n =⇒ tn

et
<

(2n)n

et/2

which implies
e−1/x/xn < (2n)n · e−1/x

which goes to 0 as desired. To conclude, observe that g and all of it’s nth derivatives are
given precisely as linear combinations of gns as defined above (in particular noticing that the
derivative of gn at 0 is given exactly by the limit as x → 0 of gn+1) to see that g is C∞ as
desired.

Now observe that we can manipulate g to produce a C∞ function f = g(x) · g(1− x) that’s
positive on (0, 1) and 0 everywhere else. Now we can let

IR(x) =
∏
i∈[n]

f

(
xi − ai
bi − ai

)

and conclude the proof.

To better support the content of the next section, for f : Rn → R we’ll define the support
Sf of f to be

Sf = {f 6= 0}

4 Partitions of Unity

Now that all of our technology has been assembled, we’ll finish with the following result:

Theorem 3. Let U =
⋃
k∈N Uk ⊆ Rn all be open. There there exists {fi}i∈N ⊆ C∞(Rn;R)

such that:

• fi is non-negative, and the support of each fi is compact and contained in U .

• For all x ∈ U , there exists ε > 0 such that B(x, ε) intersects only finitely many Sfi.
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•
∑
i∈N

fi = x 7→

{
1 x ∈ U
0 otherwise

• For all i ∈ N, there exists k ∈ N such that Uk contains the support of fi.

We call such a collection a partition of unity of class C∞ with compact support dominated
by {Uk}k∈N.

Proof. Let {Ri}i∈N be as in the first theorem, and {Ii}i∈N be the corresponding indicator
functions from the second result. Let λ =

∑
i∈N Ii, which, by our local finiteness condition,

clearly converges and is C∞. Now set

fi =

{
Ii/λ x ∈ U
0 otherwise

to produce the desired functions.
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