SURFACTANT DYNAMICS FROM THE ARNOLD PERSPECTIVE

Ethan Lu, Carolyn Lee

JOINT WORK WITH JONATHAN JENKINS, YUXUAN LIU, AND DESMOND REED

New Connections in Math 2021

OCTOBER 30, 2021

MOTIVATION AND SETUP

Background

- Basic idea: analyze PDEs through **the calculus of variations**.
- Why?
 - PDEs are hard to solve!
 - Techniques including energy estimates, bootstrapping, functional analysis, etc. are often needed to do anything useful.
 - Alternative characterizations can provide other insights.
- (Arnold '66): critical points of a particular energy are solutions to the Euler equations.

Background (cont)

- Next question: can the same be extended to other PDEs?
- Answer: yes!
- In particular, we're interested in those related to **surfactants**.
 - Notable examples: detergents, emulsifiers, and soap bubbles.
 - Relevant to fields like the cosmetic industry, ore extraction and in biology.

Let $\Omega \subseteq \mathbb{R}^n$ be bounded, connected and open, and set $\Sigma := \partial \Omega$ to be it's boundary and $\nu : \Sigma \to \mathbb{R}^n$ to be the associated outward pointing unit normal. We define the function spaces $\text{Diff}_0(\Omega)$, $\text{FDiff}(\Omega) \subseteq L^2(\Omega; \mathbb{R}^n)$, to be the sets of volume/orientation preserving diffeomorphisms

$$\mathsf{FDiff}(\Omega) = \{\eta : \Omega \to \mathbb{R}^n \mid \eta \text{ a diffeomorphism}\}.$$

 $\mathsf{Diff}_{\mathsf{o}}(\Omega) = \{\eta \in \mathsf{FDiff}(\Omega) \mid \eta(\Omega) = \Omega\}.$

THE SETUP

TECHNICAL RESULTS

KEY TOOLS:

Characterizations of Perturbations

Orthogonality Conditions.

Tools from differential geometry tell us that

$$T_{\eta} \text{Diff}_{\mathsf{O}}(\Omega) = \{ u \circ \eta \in L^{2}(\Omega; \mathbb{R}^{n}) \mid \text{div } u = \mathsf{O}, u \cdot \nu = \mathsf{O} \}$$
(1)
$$T_{\eta} \text{FDiff}(\Omega) = \{ u \circ \eta \in L^{2}(\Omega; \mathbb{R}^{n}) \mid \text{div } u = \mathsf{O} \}$$
(2)

which gives us a necessary condition for locally generating a perturbation. Using techniques from ODE, we can also show that this condition is sufficient.

Let X be the space of all flows associated to Ω over the time interval [0, 1]; that is,

$$X := \{\eta \in C^1([\mathsf{O},\mathsf{1}];\mathsf{FDiff}(\Omega)) \mid \eta(\mathsf{O}) = \eta_\mathsf{O}, \eta(\mathsf{1}) = \eta_\mathsf{1}\}$$

where η_0, η_1 are some fixed initial and terminal states of the fluid.

Lemma 1

Let $v_0 : [0, 1] \to \{v \in L^2(\Omega; \mathbb{R}^n) \mid \text{div} (v \circ \eta^{-1}) = 0\}$, $\eta_0, \eta_1 \in \text{FDiff}(\Omega)$ be fixed. Then there exists a perturbation $\zeta : (-\varepsilon, \varepsilon) \to X$ such that:

$$\zeta(\mathsf{O}) = \eta, \zeta(\mathsf{s}) \in \mathsf{C}^{\infty}, \text{ and } \partial_{\mathsf{s}}\zeta(\mathsf{x},\mathsf{O},\mathsf{t}) := \mathsf{v}(\eta(\mathsf{x},\mathsf{t}),\mathsf{O},\mathsf{t}) = \mathsf{v}_{\mathsf{O}}(\eta(\mathsf{x},\mathsf{t}),\mathsf{t}).$$

DECOMPOSITIONS OF L^2

Now we state the Leray decomposition, which allows us to introduce the pressure term that will appear in our later PDEs.

Theorem 1 (Leray Decomposition)

Let ${\mathcal V}$ be the space of smooth and compactly supported divergence free functions; that is,

$$\mathcal{V} = \{ \varphi \in C^{\infty}_{c}(\Omega; \mathbb{R}^{n}) \mid \operatorname{div} \varphi = \mathbf{0} \}$$
(3)

Let H be the closure of \mathcal{V} in $L^2(\Omega; \mathbb{R}^n)$. Then H and its orthogonal complement in $L^2(\Omega; \mathbb{R}^n)$ satisfy the following:

$$H = \{ u \in L^2(\Omega; \mathbb{R}^n) \mid \text{div } u = 0, u \cdot \nu = 0 \}$$
(4)

$$H^{\perp} = \{ \nabla p \in L^{2}(\Omega; \mathbb{R}^{n}) \mid p \in H^{1}(\Omega) \}$$
(5)

PREVIOUS RESULTS: ARNOLD'S SETUP

Theorem 2 (Arnold)

If they exist, critical points of the energy functional $E:X\to \mathbb{R}^+$ defined via

$$E(\eta) = \int_0^1 \int_\Omega \frac{1}{2} |\partial_t \eta|^2 \, dx dt \tag{6}$$

satisfy the incompressible Euler equations with fixed boundary and uniform constant density; that is,

$$\begin{cases} \partial_t u + u \cdot \nabla u + \nabla p = 0 & \text{on } \Omega \\ \mathbf{div} \ u = 0 & \text{on } \Omega \\ u \cdot \nu = 0 & \text{on } \partial \Omega \end{cases}$$
(7)

where $u(\eta(\mathbf{x}, t), t) = \partial_t \eta(\mathbf{x}, t)$ and p is the pressure.

Proof Sketch.

\blacksquare For any perturbation ζ as before, we know that we must have

 $\partial_{s} E(\zeta) \mid_{s=0} = 0$

since $\zeta(0) = \eta$ is a critical point.

• We calculate to find that $\partial_t u + u \cdot \nabla u$ must vanish when tested against any smooth, compactly supported, and divergence free function; that is

$$\partial_t u + u \cdot \nabla u \in \mathcal{V}^\perp$$

(Recall: $\mathcal{V} = \{ \varphi \in C^{\infty}_{c}(\Omega; \mathbb{R}^{n}) \mid \operatorname{div} \varphi = 0 \}$)

Using the Leray decomposition, we see that this term must be exactly the negative pressure gradient, which leads to the equality

 $\partial_t u + u \cdot \nabla u + \nabla p = 0 \text{ on } \Omega.$

We now consider a significant complication of the Arnold functional, where we introduce a globally defined potential term φ (which can represent forces such as gravity or electromagnetism), allow the density ρ of the fluid to vary over space, add a term σ to compensate for surface tension, and allow the fluid to move freely through space.

Theorem 3

Given $\sigma \in \mathbb{R}^+$, $\overline{\rho} : \Omega \to \mathbb{R}^+$ and $\varphi \in C^1(\mathbb{R}^n)$, critical points (if they exist) of the action $A : X \to \mathbb{R}$ defined via

$$A(\eta) = \int_{0}^{1} \left(\int_{\Omega} \frac{\overline{\rho}}{2} |\partial_{t}\eta|^{2} - \varphi(\eta) \, dx - \int_{\partial\Omega(t)} \sigma dS \right) dt \tag{8}$$

must satisfy the incompressible Euler equations with surface tension; that is,

$$\begin{cases}
\rho(\partial_t u + u \cdot \nabla u) + \nabla p = -\nabla\varphi & \text{on } \Omega(t) \\
\mathbf{div} \ u = 0 & \text{on } \Omega(t) \\
p = -\sigma H & \text{on } \partial \Omega(t)
\end{cases}$$
(9)

where $\Omega(t) := \eta(\Omega, t)$, u is the Eulerian velocity defined via $u(\eta(x, t), t) = \partial_t \eta(x, t)$, $\overline{\rho}$, ρ are Lagrangian and Eulerian densities, and $H = -\operatorname{div} \nu$ is the mean curvature of $\partial \Omega(t)$.

Conservation of Mass

Note: We require the density ρ to satisfy the conservation of mass law:

$$rac{d}{dt}\int_{\eta(U,t)}
ho d\mathsf{S}=\mathsf{O}$$

for any $U \subseteq \Omega$. Combining this with the transport equation yields

 $\partial_t \rho + \operatorname{div}(\rho u) = 0 \text{ on } \Omega(t).$

Proof of Theorem (Sketch).

First, we localize: by only considering compactly supported velocity fields, we can isolate the contribution of the terms defined on Ω to deduce the first equation:

$$\rho(\partial_t u + u \cdot \nabla u) + \nabla p = -\nabla \varphi \text{ on } \Omega(t)$$

Considering general velocity fields, combining the Reynolds transport equation and the surface divergence theorem, and doing further computations then yields the other equations. Now we introduce a term to penalize the motion of surfactants that move alongside the boundary. Here the motion of the surfactants is determined by the motion of the flow map.

RESULT #2 PENALIZING SURFACTANT BOUNDARY WIGGLING

Theorem 4

Given $\overline{\rho}:\Omega\to\mathbb{R}^+,\ \xi:\mathbb{R}\to\mathbb{R}^+,\ \overline{\gamma}_{o}:\partial\Omega\to\mathbb{R}^+,\ \varphi\in C^1(\mathbb{R}^n)$, let $A:X\to\mathbb{R}$ via

$$A(\eta) = \int_{0}^{1} \left(\int_{\Omega} \frac{\overline{\rho}}{2} |\partial_{t}\eta|^{2} - \varphi(\eta) \, dx + \int_{\partial\Omega} \frac{\overline{\gamma}_{0}}{2} |\partial_{t}\eta|^{2} \, dS - \int_{\partial\Omega(t)} \xi(\gamma) \, dS \right) dt. \tag{10}$$

Then critical points (if they exist) of the action functional A must satisfy

$$\begin{cases} \rho(\partial_{t}u + u \cdot \nabla u) + \nabla p = -\nabla\varphi & \text{on } \Omega(t) \\ \mathbf{div} \ u = \mathbf{0} & \text{on } \Omega(t) \\ \partial_{t}\rho + \mathbf{div}(\rho u) = \mathbf{0} & \text{on } \Omega(t) \\ \gamma(\partial_{t}u + u \cdot \nabla u) - p\nu = \nabla_{\Sigma(t)}\sigma + H\nu\sigma & \text{on } \partial\Omega(t) \\ \partial_{t}\gamma + \nabla\gamma \cdot u + \gamma \mathbf{div}_{\Sigma(t)}u = \mathbf{0} & \text{on } \partial\Omega(t) \end{cases}$$
(11)

where u is the Eulerian velocity, $\sigma = \xi(\gamma) - \xi'(\gamma)\gamma$ is the surface tension, ξ is some free energy, $\overline{\rho}, \rho$ are densities, and p is the pressure.

16

- Thanks for listening!
- We'd like to thank Ian Tice, our advisor, for his guidance and mentorship throughout this project. This project was supported by funding from the NSF CAREER grant (#1653161).
- Thanks also to the organizers and Duke for hosting NCM21.
- Any questions?

REFERENCES

V. I. Arnold.

On the differential geometry of infinite-dimensional lie groups and its application to the hydrodynamics of perfect fluids.

In G. A. et al, editor, *Vladimir I. Arnold - Collected Works, vol 2.*, pages 33–69. Springer, 1966.

D. G. EBIN AND J. MARSDEN. **GROUPS OF DIFFEOMORPHISMS AND THE MOTION OF AN INCOMPRESSIBLE FLUID.** Annals of Mathematics, 92(1):102–163, 1970.

J. JENKINS, C. LEE, Y. LIU, E. LU, AND D. REED. **SURFACTANT DYNAMICS FROM THE ARNOLD PERSPECTIVE.** *SIAM Undergraduate Research Online(SIURO)*, 14, 2021.

J. Shatah and C. Zeng.

GEOMETRY AND A PRIORI ESTIMATES FOR FREE BOUNDARY PROBLEMS OF THE EULER EQUATION. *Comm. Pure Appl. Math.*, Vol. LXI:698–744, 2007.