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Motivation and Setup



Background

Basic idea: analyze PDEs through the calculus of variations.
Why?
I PDEs are hard to solve!
I Techniques including energy estimates, bootstrapping, functional analysis, etc.

are often needed to do anything useful.
I Alternative characterizations can provide other insights.

(Arnold ’66): critical points of a particular energy are solutions to the Euler
equations.
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Background (cont)

Next question: can the same be extended to other PDEs?
Answer: yes!
In particular, we’re interested in those related to surfactants.
I Notable examples: detergents, emulsifiers, and soap bubbles.
I Relevant to fields like the cosmetic industry, ore extraction and in biology.
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Notational Conventions

Let Ω ⊆ Rn be bounded, connected and open, and set Σ := ∂Ω to be it’s boundary
and ν : Σ→ Rn to be the associated outward pointing unit normal.
We define the function spaces Di�0(Ω), FDi�(Ω) ⊆ L2(Ω;Rn), to be the sets of
volume/orientation preserving di�eomorphisms

FDi�(Ω) = {η : Ω→ Rn | η a di�eomorphism}.
Di�0(Ω) = {η ∈ FDi�(Ω) | η(Ω) = Ω}.
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The Setup

Ω

Σ = ∂Ω

•y

Ω (t)

Σ (t) = ∂Ω(t)

• x = η (t, y)

η (t, ·)
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Technical Results



Key tools:

Characterizations of Perturbations Orthogonality Conditions.
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Tools from di�erential geometry tell us that

TηDi�0(Ω) = {u ◦ η ∈ L2(Ω;Rn) | div u = 0,u · ν = 0} (1)
TηFDi�(Ω) = {u ◦ η ∈ L2(Ω;Rn) | div u = 0} (2)

which gives us a necessary condition for locally generating a perturbation. Using
techniques from ODE, we can also show that this condition is su�cient.
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Existence of a Perturbation

Let X be the space of all flows associated to Ω over the time interval [0, 1]; that is,

X := {η ∈ C1([0, 1]; FDi�(Ω)) | η(0) = η0, η(1) = η1}

where η0, η1 are some fixed initial and terminal states of the fluid.

Lemma 1
Let v0 : [0, 1]→ {v ∈ L2(Ω;Rn) | div (v ◦ η−1) = 0}, η0, η1 ∈ FDi�(Ω) be fixed.
Then there exists a perturbation ζ : (−ε, ε)→ X such that:

ζ(0) = η, ζ(s) ∈ C∞, and ∂sζ(x,0, t) := v(η(x, t),0, t) = v0(η(x, t), t).
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Decompositions of L2

Now we state the Leray decomposition, which allows us to introduce the pressure
term that will appear in our later PDEs.

Theorem 1 (Leray Decomposition)
Let V be the space of smooth and compactly supported divergence free functions;
that is,

V = {ϕ ∈ C∞c (Ω;Rn) | div ϕ = 0} (3)

Let H be the closure of V in L2(Ω;Rn). Then H and its orthogonal complement in
L2(Ω;Rn) satisfy the following:

H = {u ∈ L2(Ω;Rn) | div u = 0,u · ν = 0} (4)

H⊥ = {∇p ∈ L2(Ω;Rn) | p ∈ H1(Ω)} (5)
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Results



Previous results: Arnold’s setup

Theorem 2 (Arnold)
If they exist, critical points of the energy functional E : X → R+ defined via

E(η) =

∫ 1

0

∫
Ω

1
2 |∂tη|2 dxdt (6)

satisfy the incompressible Euler equations with fixed boundary and uniform
constant density; that is, 

∂tu + u · ∇u +∇p = 0 on Ω

div u = 0 on Ω

u · ν = 0 on ∂Ω

(7)

where u(η(x, t), t) = ∂tη(x, t) and p is the pressure.
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Proof Sketch.
For any perturbation ζ as before, we know that we must have

∂sE(ζ) |s=0= 0

since ζ(0) = η is a critical point.
We calculate to find that ∂tu + u · ∇u must vanish when tested against any
smooth, compactly supported, and divergence free function; that is

∂tu + u · ∇u ∈ V⊥

(Recall: V = {ϕ ∈ C∞c (Ω;Rn) | div ϕ = 0})
Using the Leray decomposition, we see that this term must be exactly the
negative pressure gradient, which leads to the equality

∂tu + u · ∇u +∇p = 0 on Ω.
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Result #1: Surface tension and potential

We now consider a significant complication of the Arnold functional, where we
introduce a globally defined potential term ϕ (which can represent forces such as
gravity or electromagnetism), allow the density ρ of the fluid to vary over space,
add a term σ to compensate for surface tension, and allow the fluid to move freely
through space.
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Theorem 3
Given σ ∈ R+, ρ : Ω→ R+ and ϕ ∈ C1(Rn), critical points (if they exist) of the action
A : X → R defined via

A(η) =

∫ 1

0

(∫
Ω

ρ

2 |∂tη|2 − ϕ(η) dx −
∫
∂Ω(t)

σdS
)

dt (8)

must satisfy the incompressible Euler equations with surface tension; that is,
ρ(∂tu + u · ∇u) +∇p = −∇ϕ on Ω(t)
div u = 0 on Ω(t)
p = −σH on ∂Ω(t)

(9)

where Ω(t) := η(Ω, t), u is the Eulerian velocity defined via u(η(x, t), t) = ∂tη(x, t), ρ, ρ
are Lagrangian and Eulerian densities, and H = −div ν is the mean curvature of
∂Ω(t).
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Conservation of Mass
Note: We require the density ρ to satisfy the conservation of mass law:

d
dt

∫
η(U,t)

ρ dS = 0

for any U ⊆ Ω.
Combining this with the transport equation yields

∂tρ+ div(ρu) = 0 on Ω(t).
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Proof of Theorem (Sketch).

First, we localize: by only considering compactly supported velocity fields, we
can isolate the contribution of the terms defined on Ω to deduce the first
equation:

ρ(∂tu + u · ∇u) +∇p = −∇ϕ on Ω(t)

Considering general velocity fields, combining the Reynolds transport equation
and the surface divergence theorem, and doing further computations then
yields the other equations.
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Result #2 Penalizing surfactant boundary wiggling

Now we introduce a term to penalize the motion of surfactants that move alongside
the boundary. Here the motion of the surfactants is determined by the motion of
the flow map.
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Result #2 Penalizing surfactant boundary wiggling

Theorem 4
Given ρ : Ω→ R+, ξ : R→ R+, γ0 : ∂Ω→ R+, ϕ ∈ C1(Rn), let A : X → R via

A(η) =

∫ 1

0

(∫
Ω

ρ

2 |∂tη|2 − ϕ(η) dx +

∫
∂Ω

γ0
2 |∂tη|2 dS−

∫
∂Ω(t)

ξ(γ) dS
)

dt. (10)

Then critical points (if they exist) of the action functional A must satisfy

ρ(∂tu + u · ∇u) +∇p = −∇ϕ on Ω(t)
div u = 0 on Ω(t)
∂tρ+ div(ρu) = 0 on Ω(t)
γ(∂tu + u · ∇u)− pν = ∇Σ(t)σ + Hνσ on ∂Ω(t)
∂tγ +∇γ · u + γdivΣ(t)u = 0 on ∂Ω(t)

(11)

where u is the Eulerian velocity, σ = ξ(γ)− ξ′(γ)γ is the surface tension, ξ is some free energy, ρ, ρ are
densities, and p is the pressure.
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Thanks!

Thanks for listening!
We’d like to thank Ian Tice, our advisor, for his guidance and mentorship
throughout this project. This project was supported by funding from the NSF
CAREER grant (#1653161).
Thanks also to the organizers and Duke for hosting NCM21.
Any questions?
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