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Recall the following PDEs:

1. The transport/reaction equation: 𝜕𝑡𝑢 + 𝑎 · ∇𝑢 + 𝑏𝑢 = 𝑓 .

2. The wave equation: 𝜕2
𝑡 𝑢 − Δ𝑢 = 𝑓 .

3. The general wave equation: 𝛼𝜕2
𝑡 𝑢 + 𝜅𝜕𝑡𝑢 − 𝐴 : 𝐷2𝑢 + 𝑏 · ∇𝑢 + 𝑐𝑢 = 𝑓 , where the operator

associated to 𝐴, 𝑏, 𝑐 is assumed to be elliptic.

4. Maxwell’s equations: 
div 𝐵 = 0
div𝐸 = 𝜌

𝜕𝑡𝐸 + 𝐽 = curl 𝐵
𝜕𝑡𝐵 = − curl𝐸

where 𝐸, 𝐵 : R3 ×R→ R3 are vector fields describing the electric/magnetic field and 𝐽 is the
electric current density.

There are all actually part of the same class of PDEs! Here are some clues to why this might be
true:

1. In 1 dimension, (𝜕2
𝑡 − 𝜕2

𝑥) = (𝜕𝑡 − 𝜕𝑥)(𝜕𝑡 + 𝜕𝑥), which establishes a connection between the
transport and wave equations.

2. In Maxwell’s equations, applying the divergence operator to both sides of the third equation
yields

𝜕𝑡 div𝐸 + div 𝐽 = 𝜕𝑡𝜌 + div 𝐽 = 0

which is a balance law that essentially says that the current is the flux vector associated to
charge. Now recall that Δ = − curl2 +∇ div for R3 valued vector fields.
Applying the curl also yields

= 𝜕𝑡 curl𝐸 + curl 𝐽 = curl2 𝐵 = curl2 𝐵 − ∇ div 𝐵 = −Δ𝐵
which implies

𝜕2
𝑡 𝐵 − Δ𝐵 = curl 𝐽
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and similarly,
𝜕2
𝑡 𝐸 − Δ𝐸 = −𝜕𝑡 𝐽 − ∇𝜌.

Now write curl𝑋 =
∑
𝑀𝑖𝜕𝑖𝑋 where 𝑀𝑖 are the appropriately chosen antisymmetric 3x3

matrices. Now note

𝜕𝑡

(
𝐸
𝐵

)
= 𝜕𝑡

(
curl 𝐵
− curl𝐸

)
+

(−𝐽
0

)
and also that (

curl 𝐵
curl𝐸

)
=

∑
𝑗

(
0 𝑀 𝑗

−𝑀 𝑗 0

)
𝜕𝑗

(
𝐸
𝐵

)
hence the dynamic part of Maxwell’s equations are just

𝜕𝑡

(
𝐸
𝐵

)
−

∑
𝑗

𝐴 𝑗𝜕𝑗

(
𝐸
𝐵

)
=

(−𝐽
0

)
which is just a vector-valued transport equation.

3. In the generalized wave equation, consider defining the function𝑈 : R𝑛 × R→ R𝑛+2 via

𝑈 =
©«
𝑢
𝜕𝑡𝑢
∇𝑢

ª®®¬ =⇒ 𝜕𝑡𝑈 =
©«
𝜕𝑡𝑢
𝜕2
𝑡 𝑢

∇𝜕𝑡𝑢
ª®®¬ , 𝜕𝑗𝑈 =

©«
𝜕𝑗𝑢
𝜕𝑡𝜕𝑗𝑢
∇𝜕𝑗𝑢

ª®®¬ .
Then𝑈 satisfies

©«
1 0
0 𝛼

0

0 𝐴

ª®®¬ 𝜕𝑡𝑈 +
∑
𝑗∈[𝑛]

©«

0 0

0

0 −𝑎1𝑗 · · · −𝑎𝑛𝑗
−𝑎1𝑗
· · ·
−𝑎𝑛𝑗

0

ª®®®®®®¬
𝜕𝑗𝑈 + ©«

0 −1
𝑐 𝜅

0 · · · 0
𝑏1 · · · 𝑏𝑛

0 0

ª®®¬ 𝜕𝑡𝑈 =
©«
0
𝑓
0

ª®®¬
which can be rewritten as

𝑛∑
𝑖=0

𝐴 𝑗𝜕𝑗𝑈 + 𝐵𝑈 = 𝐹,

where 𝜕0 is understood to mean 𝜕𝑡 , and 𝐴 𝑗 ∈ R𝑛×𝑛𝑠𝑦𝑚 , 𝐵 ∈ R𝑛×𝑛 . Note also that

𝐴0 ©«
𝜔

𝜓

𝜉

ª®®¬ ·
©«
𝜔

𝜓

𝜉

ª®®¬ = 𝜔2 + 𝛼𝜓2 + 𝐴𝜉 · 𝜉 ≥ min(1, 𝛼, 𝜃)

©«
𝜔

𝜓

𝜉

ª®®¬


2

so if 𝛼 > 0, 𝐴0 is positive-definite, which is an assumption we’ll be making from now on.

With this additional structure, we’ll now define the problem we’re interested in studying.
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Definition. A symmetric hyperbolic system is the PDE{∑𝑛
𝑖=0 𝐴

𝑗𝜕𝑗𝑢 + 𝐵𝑢 = 𝑓

𝑢(𝑡 = 0) = 𝑔

for some unknown 𝑢 : R𝑛 × R → R𝑚 , given data 𝑓 , 𝑔, symmetric matrices 𝐴 𝑗 : R𝑛 × R → R𝑚×𝑚 , 𝐵 ∈
R𝑛 × R→ R𝑚×𝑚 , and where we assume there exists 𝜃 > 0 with 𝐴0𝜉 · 𝜉 ≥ 𝜃 ‖𝜉‖2 for all 𝜃 ∈ R𝑚 .

Remark. When 𝑚 = 1 this is just the transport/reaction equation, and can be attacked with the method of
characteristics. If𝑚 ≥ 2, the same approach works for the special case of when each𝐴 𝑗 is just a multiple of the
identity, but otherwise fails. As we’re about to see, it turns out that the key to progress will be quantitative
estimates.

We begin first with some formal a priori estimates (using Einstein notation for convenience). Suppose
first that 𝑢 is a solution to the problem stated above. Then taking a dot product and integrating,
we have that ∫

R𝑛
𝐴0𝜕𝑡𝑢 · 𝑢 + 𝐴 𝑗𝜕𝑗𝑢 · 𝑢 +

∫
R𝑛
𝐵𝑢 · 𝑢 =

∫
R𝑛
𝑓 · 𝑢.

Now note that
𝜕𝑗

(
𝐴 𝑗 𝑢 · 𝑢

2

)
= 𝜕𝑗𝐴 𝑗 𝑢 · 𝑢

2
+ 𝐴 𝑗𝜕𝑗𝑢 · 𝑢

so assuming sufficiently nice decay of 𝜕𝑗
(
𝐴 𝑗 𝑢 · 𝑢

2

)
at infinity, we have∫

R𝑛
𝐴 𝑗𝜕𝑗𝑢 · 𝑢 = −

∫
R𝑛

𝜕𝑗𝐴 𝑗 𝑢 · 𝑢
2

Thus, we have that

𝜕𝑡

∫
R𝑛
𝐴0𝑢 · 𝑢

2
≤

∫
R𝑛

| 𝑓 · 𝑢 | + |𝐵𝑢 · 𝑢 | +
�����𝜕𝑗𝐴 𝑗𝑢 · 𝑢

2

�����
≤ 2 ‖𝐵‖𝐿∞ + 𝜕𝑗𝐴 𝑗


𝐿∞ + 1

𝜃

∫
R𝑛
𝐴0𝑢 · 𝑢

2
+

∫
R𝑛

| 𝑓 |2
2

= 𝐶
∫
R𝑛
𝐴0𝑢 · 𝑢

2
+

∫
R𝑛

| 𝑓 |2
2

This in turn implies that∫
R𝑛
𝐴0𝑢 · 𝑢

2
(𝑡) ≤ 𝑒𝐶𝑡

∫
R𝑛
𝐴0𝑢 · 𝑢

2
(0) +

∫ 𝑡

0
𝑒𝐶(𝑡−𝑠)

∫
R𝑛

| 𝑓 (𝑠)|2
2

so we get the formal a priori estimate that

𝑢 ∈ 𝐿∞ ([0, 𝑇]; 𝐿2 (R𝑛;R𝑚))
provided that 𝑢(𝑡 = 0) ∈ 𝐿2 , 𝑓 ∈ 𝐿2 ((0, 𝑇); 𝐿2 (R𝑛;R𝑚)) , 𝐴 𝑗 ∈ 𝐶0,1 , 𝐵 ∈ 𝐿∞.
Recall now that we’re trying to solve the system{

𝐴0𝜕𝑡𝑢 + 𝐴 𝑗𝜕𝑗𝑢 + 𝐵𝑢 = 𝑓

𝑢(𝑡 = 0) = 𝑔
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for 𝑢 : R𝑛 × R𝑛 → R𝑚 . Last time, we showed that we can derive 𝐿2-type estimates for solutions to
this system over finite time intervals given sufficient niceness of the underlying conditions. Going
forward then, we’ll be working under the following assumptions on the data/coefficients of our
system, which should be able to rigorously justify our previous calculations:

1. 𝑇 ∈ (0,∞) is the “time horizon” we’re interested in.

2. 𝐴𝑖 , 𝐵 ∈ 𝐶0,1
𝑏 (R𝑛 × [0, 𝑇],R𝑚×𝑛 , with 𝐴𝑖 symmetric over space time.

3. 𝐴0 is uniformly coercive; that is, there exists 𝜃 > 0 such that 𝐴0(𝑥, 𝑡) ≥ 𝜃𝐼 for all 𝑥 ∈ R𝑛 , 𝑡 ∈
[0, 𝑇].

4. 𝑔 ∈ 𝐻1(R𝑛;R𝑚), 𝑓 ∈ 𝐿∞([0, 𝑇], 𝐿2(R𝑛;R𝑚)) ∩ 𝐿2([0, 𝑇], 𝐻1(R𝑛;R𝑚)).
Our previous approaches to solving PDEs involved pulling out a derivative using integration
by parts, then using this computation to find an associated bilinear form that we could apply
functional analytic tools to. It turns out in this setting, we’ll be unable to find such a bilinear form
or reason about coercivity in the same way, so we’ll need different tools to approach this problem.
A first observation to be made is then the fact that any solution satisfies

𝜕𝑡𝑢 + 𝐿𝑢 := 𝜕𝑡𝑢 + (𝐴0)−1 [
𝐴 𝑗𝜕𝑗𝑢 + 𝐵𝑢] = (𝐴0)−1 𝑓

which looks formally like an ODE. The issue, however, is that the operator 𝐿 is unbounded from
any Banach spaces to itself. While this issue could somewhat be circumvented via an appeal to
Fréchet spaces or unbounded operators, for our discussions, we’ll be handling this issue through
mollification. In particular, we’ll be modifying the differential operator so that it becomes bounded
on Sobolev spaces. (Aside: this exact problem is actually the original motivation behind Friedrichs’
invention of molliciation.)

Definition. Let 𝜂 ∈ 𝐶∞
𝑐 be a positive radial approximate identity, and for 𝜀 > 0 write 𝜂𝜀(𝑥) = 𝜀−𝑛𝜂(𝑥/𝜀),

which remains a positive radial approximate identity. Now define 𝐾𝜀 := 𝑢 ↦→ 𝜂𝜀 ∗𝑢, noting that this defines
a bounded linear operator from any Sobolev space to any other Sobolev space, implying that

𝑢 ∈ 𝐿2(R𝑛;R𝑚) =⇒ 𝐾𝜀𝑢 =
⋂
𝑘∈R

𝐻 𝑘(R𝑛;R𝑚) ⊆ 𝐶∞
0 (R𝑛;R𝑚)

Definition. For 𝜀 > 0, we say 𝑢𝜀 is an approximate solution to the problem if it solves{
𝐴0𝜕𝑡𝑢𝜀 + 𝐾𝜀

[
𝐴 𝑗𝜕𝑗𝐾𝜀𝑢𝜀

] + 𝐵𝑢𝜀 = 𝐾𝜀 𝑓

𝑢𝜀(𝑡 = 0) = 𝑔

Remark. The pre-mollification terms inside the scheme above are necessary to preserve the structure of the
estimates we’ve calculated previously.

As we’ll show now, modifying the equations in this way then makes reasoning about solutions
much easier. Multiplying the first equation above by the inverse of 𝐴0, we have that

𝜕𝑡𝑢𝜀 +𝑀𝜀(𝑡)𝑢𝜀 = (𝐴0)−1𝐾𝜀 𝑓
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for some 𝑀𝜀(𝑡) ∈ ℒ(𝐻1(R𝑛;R𝑚)), which reduces our problem to the 𝐻1-valued ODE

¤𝑢𝜀 +𝑀(𝑡)𝑢𝜀 = 𝐹(𝑡)
for which we can use the following theorem:

Theorem. Let 𝑇 > 0, 𝑋 be a real Banach space, and suppose 𝐿 ∈ 𝐿∞([0, 𝑇];ℒ(𝑋)), 𝑥0 ∈ 𝑋. Then there
exists a unique 𝑥 ∈ 𝐶0,1

𝑏 ([0, 𝑇];𝑋) ∩𝑊1,∞((0, 𝑇);𝑋) such that{
¤𝑥(𝑡) + 𝐿(𝑡)𝑥(𝑡) = 𝐹(𝑡) a.e. in time
𝑥(0) = 𝑥

Remark. A theorem in functional analysis shows that if𝑋 is separable, then𝑊1,∞((0, 𝑇);𝑋) = 𝐶0,1
𝑏 ([0, 𝑇];𝑋).

Proof. For 𝜅 > 0 define 𝑌𝜅 = 𝐶0
𝑏 ([0, 𝑇];𝐾) with the norm ‖𝑥‖𝑌𝜅 = max𝑡∈[0,𝑇] 𝑒−𝜅𝑡 ‖𝑥(𝑡)‖𝑋 , which is

equivalent to the usual norm. Given 𝑣 ∈ 𝑌𝑘 , define 𝑅𝑣 : [0, 𝑇] → 𝑋 via

𝑅𝑣(𝑡) := 𝑥0 +
∫ 𝑡

0
𝐹(𝑠) − 𝐿(𝑠)𝑣(𝑠)𝑑𝑠

which is clearly in 𝑌𝜅 ∩ 𝐶0,1
𝑏 ([0, 𝑇];𝑋). We’re looking for a fixed point, so now we calculate

‖𝑅𝑣(𝑡) − 𝑅𝑢(𝑡)‖𝑋 =

∫ 𝑡

0
𝐿(𝑠)(𝑣(𝑠) − 𝑢(𝑠))


𝑋

≤ ‖𝐿‖𝐿∞
∫ 𝑡

0
‖𝑢(𝑠) − 𝑣(𝑠)‖𝑋 𝑑𝑠

= 𝑒𝜅𝑡 ‖𝐿‖𝐿∞
∫ 𝑡

0
𝑒−𝜅(𝑡−𝑠)𝑒−𝜅𝑠 ‖𝑢(𝑠) − 𝑣(𝑠)‖𝑋 𝑑𝑠

= 𝑒𝜅𝑡 ‖𝐿‖𝐿∞ ‖𝑢 − 𝑣‖𝑌𝜅
𝑒−𝜅𝑡
𝜅

(𝑒𝜅𝑡 − 1)

= 𝑒𝜅𝑡
‖𝐿‖𝐿∞
𝜅

‖𝑢 − 𝑣‖𝑌𝜅
This implies that

‖𝑅𝑢 − 𝑅𝑣‖𝑌𝜅 ≤ ‖𝐿‖𝐿∞
𝜅

‖𝑢 − 𝑣‖𝑌𝜅
so choosing 𝜅 > 2 ‖𝐿‖ +1, we see that 𝑅 is a contraction and hence admits a unique fixed point. �

Applying the theorem, we immediately see that there always exists a unique approximate solution
to the problem we’re interested in solving; that is, for all 𝜀 > 0, there exists 𝑢𝜀 ∈ 𝐶0,1

𝑏 ([0, 𝑇];𝐻1) ∩
𝑊1,∞((0, 𝑇);𝐻1) such that {

𝐴0𝜕𝑡𝑢𝜀 + 𝐾𝜀
[
𝐴 𝑗𝜕𝑗𝐾𝜀𝑢𝜀

] + 𝐵𝑢 = 𝑓

𝑢𝜀(𝑡 = 0) = 𝑔
.

Now, in order to solve our original equation, we want to “send 𝜀 → 0” and argue that the limit of
such a sequence does the job. To do this, we’ll need to formalize the a priori estimates done before.
It turns out that, using the structure of an approximate solution, this can now be done rigorously.
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Theorem. Assuming the minimal hypothesis, we have that

sup
𝑡∈[0,𝑇]

‖𝑢𝜀(·, 𝑡)‖2
𝐻1 ≤ 𝐶

[
‖𝑔‖2

𝐻1 + ‖ 𝑓 ‖2
𝐿2([0,𝑇];𝐻1)

]
and that

sup
𝑡∈[0,𝑇]

‖𝜕𝑡𝑢𝜀(·, 𝑡)‖2
𝐿2 ≤ 𝐶

[
‖𝑔‖2

𝐻1 + ‖ 𝑓 ‖2
𝐿2([0,𝑇];𝐻1) + ‖ 𝑓 ‖2

𝐿∞([0,𝑇];𝐿2)
]

for all 𝜀 > 0 for some constant depending on 𝑛, 𝑚, 𝐴0 , 𝐴 𝑗 , 𝐵, and 𝑇 (but not 𝜀).

Proof. First note that

[0, 𝑇] 3 𝑡 ↦→
∫
R𝑛
𝐴0(·, 𝑡)𝑢𝜀(·, 𝑡) · 𝑢𝜀(·, 𝑡)

is absolutely continuous, with

𝜕𝑡

∫
R𝑛
𝐴0(·, 𝑡)𝑢𝜀(·, 𝑡) · 𝑢𝜀(·, 𝑡) =

∫
R𝑛

𝜕𝑡𝐴0𝑢𝜀 · 𝑢𝜀 + 2𝐴0𝜕𝑡𝑢𝜀 · 𝑢𝜀.

Thus, we see
𝜕𝑡

∫
R𝑛

1
2
𝐴0𝑢𝜀 · 𝑢𝜀 =

∫
R𝑛
𝐴0𝜕𝑡𝑢𝜀 · 𝑢𝜀 + 𝜕𝑡𝐴0𝑢𝜀 · 𝑢𝜀/2.

but by assumption, the first term on the RHS is∫ (
𝐾𝜀 𝑓 − 𝐵𝑢𝜀 − 𝐾𝜀

[
𝐴 𝑗𝜕𝑗𝐾𝜀𝑢𝜀

] ) · 𝑢𝜀.
Using the structure of the convolution operator, we see that 𝐾𝜀 is self-adjoint and hence∫ (

−𝐾𝜀
[
𝐴 𝑗𝜕𝑗𝐾𝜀𝑢𝜀

] ) · 𝑢𝜀 = −
∫ ([

𝐴 𝑗𝜕𝑗𝐾𝜀𝑢𝜀
] ) · 𝐾𝜀𝑢𝜀

so integrating by parts, which may be done since 𝐾𝜀𝑢𝜀 is in ∩𝐻𝑠 , this is equal to

1
2

∫
−𝜕𝑗(𝐴 𝑗𝐾𝜀𝑢𝜀 · 𝐾𝜀𝑢𝜀) + 𝜕𝑗𝐴 𝑗𝐾𝜀𝑢𝜀 · 𝐾𝜀𝑢𝜀 =

1
2

∫
𝜕𝑗𝐴 𝑗𝐾𝜀𝑢𝜀 · 𝐾𝜀𝑢𝜀

Thus,

𝜕𝑡

∫
𝐴0𝑢𝜀 · 𝑢𝜀

2
≤ 𝐶

[
1 + ‖𝐵‖𝐿∞ + 𝜕𝑡𝐴0

𝐿∞ + 𝜕𝑗𝐴 𝑗

𝐿∞

] ∫
1
2
𝐴0𝑢𝜀 · 𝑢𝜀 + 1

2 ‖𝐾𝜀 𝑓 ‖2
𝐿2 .

which is exactly the type of estimate we can apply Gronwall to. In particular, since we have that

𝑍(𝑡) ≤ 𝑒𝐶𝑡𝑍(0) +
∫ 𝑡

0
𝑒𝐶(𝑡−𝑠)𝐹(𝑠)𝑑𝑠

we get the free uniform estimate

sup
𝑡∈[0,𝑇]

𝑍(𝑡) ≤ 𝑒𝐶𝑡
[
𝑍(0) +

∫ 𝑇

0
𝐹(𝑠)𝑑𝑠

]
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so we now find that

sup
𝑡∈[0,𝑇]

∫
R𝑛

𝐴0𝑢𝜀 · 𝑢𝜀
2

≤ 𝑒𝐶𝑇
[∫

1
2
𝐴0(𝑡 = 0)𝑔 · 𝑔 +

∫ 𝑇

0

∫
R𝑛

| 𝑓 |2
]

and using coercivity again yields

sup
𝑡∈[0,𝑇]

‖𝑢𝜀(·, 𝑡)‖2
𝐿2 . ‖𝑔‖2

𝐿2 +
∫ 𝑇

0
‖ 𝑓 (·, 𝑡)‖2

𝐿2 𝑑𝑡

Now for any 𝑘 ∈ [𝑛], we can apply 𝜕𝑘 to the approximate equation to find that

𝐴0𝜕𝑡𝜕𝑘𝑢𝜀 + 𝐾𝜀
[
𝐴 𝑗𝜕𝑗𝐾𝜀𝜕𝑘𝑢𝜀

] + 𝐵𝜕𝑘𝑢𝜀 = 𝐾𝜀𝜕𝑘 𝑓 − 𝜕𝑘𝐴0𝜕𝑡𝑢𝜀 − 𝐾𝜀
[
𝜕𝑘𝐴 𝑗𝜕𝑗𝐾𝜀𝑢𝜀

] − 𝜕𝑘𝐵𝑢𝜀

Performing estimates similarly to before, we thus find that

𝜕𝑡

∫
R𝑛

𝐴0

2
𝜕𝑘𝑢𝜀·𝜕𝑘𝑢𝜀 ≤ 𝐶

∫
R𝑛

𝐴0
2
𝜕𝑘𝑢𝜀·𝜕𝑘𝑢𝜀+1

2

∫
R𝑛

|𝜕𝑘 𝑓 |2+
∫
R𝑛

−𝜕𝑘𝐴
0𝜕𝑡𝑢𝜀︸       ︷︷       ︸
I

−𝐾𝜀
[
𝜕𝑘𝐴 𝑗𝜕𝑗𝐾𝜀𝑢𝜀

]︸               ︷︷               ︸
II

− 𝜕𝑘𝐵𝑢𝜀︸︷︷︸
III

 ·𝜕𝑘𝑢𝜀.
Now we consider each of the labeled terms in turn. The first term is controlled by

|𝐼 | =
����∫ −𝜕𝑘𝐴0𝜕𝑡𝑢𝜀 · 𝜕𝑘𝑢𝜀

���� . ∫
|𝜕𝑡𝑢𝜀 |2 + 𝜕𝑘𝑢𝜀𝜕𝑘𝑢𝜀

.
∫ ���𝐾𝜀 𝑓 − 𝐵𝑢𝜀 − 𝐾𝜀

(
𝐴 𝑗𝜕𝑗𝐾𝜀𝑢𝜀

)���2 + 𝐴0𝜕𝑘𝑢𝜀 · 𝜕𝜀𝑢𝜀
2

.
∫ | 𝑓 |2

2
+ 𝐴0𝑢𝜀 · 𝑢𝜀

2
+ 𝐴0𝜕𝑘𝑢𝜀 · 𝜕𝑘𝑢𝜀

2

Again using the fact that 𝐾𝜀 is self-adjoint, we have

|II| =
����∫ −𝜕𝑘𝐴 𝑗𝜕𝑗𝐾𝜀𝑢𝜀 · 𝜕𝑘𝐾𝜀𝑢𝜀

���� . sup
𝑗∈[𝑛]

∇𝐴 𝑗

𝐿∞

∫
|𝐾𝜀∇𝑢𝜀 |2 .

∫
|∇𝑢𝜀 |2 .

∫
𝐴0𝜕𝑘𝑢𝜀 · 𝜕𝑘𝑢𝜀

2

Finally, we can handle the third term by noticing that

|III| ≤ ‖∇𝐵‖𝐿∞
∫
R𝑛

|𝑢𝜀 |2
2

+ 𝜕𝑘𝑢𝜀 · 𝜕𝑘𝑢𝜀
2

≤ 𝐶
∫
R𝑛

𝐴0𝑢𝜀 · 𝑢𝜀
2

+ 𝐴0𝜕𝑘𝑢𝜀 · 𝜕𝑘𝑢𝜀
2

.

Combining this with the previous estimates then yields

𝜕𝑡
©«
∑
|𝛼 |≤1

∫
R𝑛

𝐴0𝜕𝛼𝑢𝜀 · 𝜕𝛼𝑢𝜀
2

ª®¬ ≤ 𝐶
∑
|𝛼 |≤1

∫
𝐴0𝜕𝛼𝑢𝜀 · 𝜕𝛼𝑢𝜀

2
+ 𝐶 ‖ 𝑓 ‖2

𝐻1

Gronwall then yields exactly the same type of estimate:

sup
𝑡∈[0,𝑇]

‖𝑢𝜀(·, 𝑡)‖2
𝐻1 . ‖𝑔‖2

𝐻1 +
∫ 𝑇

0
‖ 𝑓 (·, 𝑡)‖2

𝐻1 𝑑𝑡.

7
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Finally, to bound sup𝑡∈[0,𝑇] ‖𝜕𝑡𝑢𝜀(·, 𝑡)‖2
𝐿2 we solve for 𝜕𝑡𝑢𝜀 to see that

𝜕𝑡𝑢𝜀 = (𝐴0)−1 [
𝐾𝜀 𝑓 − 𝐵𝑢𝜀 − 𝐾𝜀

[
𝐴 𝑗𝜕𝑗𝐾𝜀𝑢𝜀

] ]
which implies that

sup
𝑡∈[0,𝑇]

‖𝜕𝑡𝑢𝜀(·, 𝑡)‖2
𝐿2 . sup

𝑡∈[0,𝑇]
‖𝜕𝑡𝑢𝜀(·, 𝑡)‖2

𝐻1 + terms we don’t care about.

�

With these estimates out of the way we can now move onto the following theorem.

Theorem. There exists 𝑢 ∈ 𝐿∞𝑇 (𝐻1) such that 𝜕𝑡𝑢 ∈ 𝐿∞𝑇 (𝐿2) solving{
𝐴0𝜕𝑡𝑢 + 𝐴 𝑗𝜕𝑗𝑢 + 𝐵𝑢 = 𝑓 a.e. in R𝑛 × (0, 𝑇)
𝑢(𝑡 = 0) = 𝑔 in R𝑛

Further, 𝑢 satisfies

‖𝑢‖𝐿∞(𝐻1) + ‖𝜕𝑡𝑢‖𝐿∞(𝐿2) ≤ the things in the previous theorem

Proof. The estimates above give uniform bound for 𝑢𝜀 in 𝐿∞𝑇 (𝐻1) and 𝐿2
𝑇(𝐻1) and 𝜕𝑡𝑢𝜀 in 𝐿∞𝑇 (𝐿2)

and 𝐿2
𝑇(𝐿2). Using weak-star convergence, we can find a sequence {𝜀𝑛} with 𝜀𝑛 → 0 such that

𝑢𝜀
∗
⇀ 𝑢 in 𝐿∞𝑇 (𝐻1)

𝑢𝜀 ⇀ 𝑢 in 𝐿2
𝑇(𝐻1)

𝜕𝑡𝑢𝜀
∗
⇀ 𝜕𝑡𝑢 in 𝐿∞𝑇 (𝐿2)

𝜕𝑡𝑢𝜀 ⇀ 𝜕𝑡𝑢 in 𝐿2
𝑇(𝐿2)

where 𝜕𝑡𝑢 is understood in the sense of distributions.
Lower semicontinuity in the weak and weak-star topologies provides the specified estimate for 𝑢,
so it suffices to show that 𝑢 actually solves the desired system.
Towards doing so, let 𝜑 ∈ 𝐶∞

𝑐 ((0, 𝑇)), 𝑣 ∈ 𝐿2(R𝑛;R𝑛). Then for all 𝑡 ∈ (0, 𝑇), we have(
𝐴0𝜕𝑡𝑢𝜀 , 𝑣

) + (
𝐴 𝑗𝜕𝑗𝐾𝜀𝑢𝜀 , 𝐾𝜀𝑣

)
+ (𝐵𝑢𝜀 , 𝑣) = (𝐾𝜀 𝑓 , 𝑣)

where (·, ·) is the inner product on (spatial) 𝐿2. Multiplying by 𝜑 and integrating on (0, 𝑇), we have
the equality∫ 𝑇

0
𝜑

(
𝐴0𝜕𝑡𝑢𝜀 , 𝑣

) + ∫ 𝑇

0
𝜑

(
𝐴 𝑗𝜕𝑗𝐾𝜀𝑢𝜀 , 𝐾𝜀𝑣

)
+

∫ 𝑇

0
𝜑 (𝐵𝑢𝜀 , 𝑣) =

∫ 𝑇

0
𝜑 (𝐾𝜀 𝑓 , 𝑣)

which implies∫ 𝑇

0

(
𝜕𝑡𝑢𝜀 , 𝜑𝐴0𝑣

) + ∫ 𝑇

0

(
𝜕𝑗𝑢𝜀 , 𝜑𝐾𝜀(𝐴 𝑗𝐾𝜀𝑣)

)
+

∫ 𝑇

0

(
𝐵𝑢𝜀 , 𝜑𝐵𝑇𝑣

)
=

∫ 𝑇

0
𝜑 (𝐾𝜀 𝑓 , 𝑣)

8
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Since 𝐾𝜀ℎ
𝜀→0−−−→ ℎ strongly in 𝐿2, we can send 𝜀 → 0 in the identity above to find that∫ 𝑇

0

(
𝜕𝑡𝑢, 𝜑𝐴0𝑣

) + ∫ 𝑇

0

(
𝜕𝑗𝑢, 𝜑(𝐴 𝑗𝑣)

)
+

∫ 𝑇

0

(
𝐵𝑢, 𝜑𝐵𝑇𝑣

)
=

∫ 𝑇

0
𝜑 ( 𝑓 , 𝑣)

which then implies ∫ 𝑇

0
𝜑

[(
𝐴0𝜕𝑡𝑢 + 𝐴 𝑗𝜕𝑗𝑢 + 𝐵𝑢 − 𝑓 , 𝑣

)]
= 0

for all 𝜑, 𝑣, which implies equality almost everywhere in space and in time, implying the desired
condition in the PDE.
Finally, note that

{𝑣 ∈ 𝐿∞𝑇 (𝐻1) | 𝜕𝑡𝑣𝐿∞𝑇 (𝐿2) and 𝑣(·, 0) = 𝑔}
is a convex and closed set with respect to the norm

𝑣 ↦→ ‖𝑣‖𝐿∞(𝐻1) + ‖𝜕𝑡𝑣‖𝐿∞𝑇 (𝐿2)

which can be thought of as the space 𝑊1,∞
𝑇 (𝐿2) ↩→ 𝐶0([0, 𝑇]; 𝐿2). Thus, this set is weakly closed,

which shows that the weak limit 𝑢 is also in this set. �

Now to prove uniqueness, we need something more interesting.

Theorem (Finite speed of propagation). Let 𝑢 solve

𝐴0𝜕𝑡𝑢 + 𝐴 𝑗𝜕𝑗𝑢 + 𝐵𝑢 = 0

where 𝑢 is in the two spaces from the last theorem. For 𝛼 > 0, 𝑡0 > 0, 𝑥0 ∈ R𝑛 , let

𝐶𝛼(𝑥0 , 𝑡0) := {(𝑥, 𝑡) | 0 < 𝑡 < 𝑡0 , 𝑥 ∈ 𝐵(𝑥0 , 𝛼(𝑡0 − 𝑡))
Then there exists 𝛼 > 0 such that if 𝑢 = 0 in 𝐵(𝑥0 , 𝛼𝑡0), then 𝑢 = 0 in 𝐶𝛼(𝑥0 , 𝑡0).
Proof. WLOG we’ll assume 𝑇 = 𝑡0. Let 𝐸 : [0, 𝑇] → R via

𝐸(𝑡) =
∫
𝐵(𝑥0 ,𝛼(𝑡0−𝑡))

(𝐴0𝑢 · 𝑢)(𝑡)

for some 𝛼 to be chosen. We note that 𝐸 is absolutely continuous with

¤𝐸(𝑡) =
∫
𝐵(𝑥0 ,𝛼(𝑡0−𝑡))

𝜕𝑡𝐴0𝑢 · 𝑢 + 2𝐴0𝜕𝑡𝑢 · 𝑢 − 𝛼

∫
𝜕𝐵(𝑥0 ,𝛼(𝑡0−𝑡))

𝐴0𝑢 · 𝑢

=
∫
𝐵(𝑥0 ,𝛼(𝑡0−𝑡))

𝜕𝑡𝐴0𝑢 · 𝑢 + 2
[−𝐴 𝑗𝜕𝑗𝑢 − 𝐵𝑢] · 𝑢 − 𝛼

∫
𝜕𝐵(𝑥0 ,𝛼(𝑡0−𝑡))

𝐴0𝑢 · 𝑢

We also know that ∫
−2𝐴 𝑗𝜕𝑗𝑢 · 𝑢 =

∫
−𝜕𝑗(𝐴 𝑗𝑢 · 𝑢) + 𝜕𝑗𝐴 𝑗𝑢 · 𝑢

9
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so substituting, ¤𝐸 is∫
𝐵(𝑥0 ,𝛼(𝑡0−𝑡))

𝜕𝑡𝐴0𝑢 · 𝑢 −
∫
𝐵(𝑥0 ,𝛼(𝑡0−𝑡))

−2𝐵𝑢 · 𝑢 + 𝐴 𝑗𝜕𝑗𝑢 · 𝑢 +
∫
𝜕𝐵(𝑥0 ,𝛼(𝑡0−𝑡))

−𝛼𝐴0𝑢 · 𝑢 − 𝐴 𝑗𝜈𝑗𝑢 · 𝑢

which is controlled by

𝐶
∫
𝐵(𝑥0 ,𝛼(𝑡0−𝑡))

𝐴0𝑢 · 𝑢 +
(
max
𝑗

𝐴 𝑗

𝐿∞ − 𝛼

) ∫
𝜕𝐵(𝑥0 ,𝛼(𝑡0−𝑡))

𝐴0𝑢 · 𝑢

Picking 𝛼 = max 𝑗
𝐴 𝑗


𝐿∞ then shows that ¤𝐸(𝑡) ≤ 𝐶𝐸(𝑡) =⇒ 𝐸(𝑡) ≤ 𝑒𝐶𝑡𝐸(0) = 0 which concludes.

�

As a corollary, we see that 𝑢 as constructed before is unique.
Now we proceed with some results relating spatial and temporal regularity of such solutions.

Theorem. Let 1 ≤ 𝑘 ∈ N and suppose that𝐴0 , 𝐴 𝑗 , 𝐵 ∈ 𝐶0,1
𝑏 (R𝑛×[0, 𝑇];R𝑚)∩𝐿∞((0, 𝑇);𝐶𝑘−1,1

𝑏 (R𝑛;R𝑚×𝑚)),
𝑔 ∈ 𝐻 𝑘(R𝑛;R𝑚) and 𝑓 ∈ 𝐿2((0, 𝑇);𝐻 𝑘(R𝑛;R𝑚)) ∩ 𝐿∞((0, 𝑇);𝐻 𝑘−1(R𝑛;R𝑚)). Then

sup
𝑡∈[0,𝑇]

‖𝑢(·, 𝑡)‖𝐻𝑘 ≤ 𝐶
(
‖𝑔‖𝐻𝑘 + ‖ 𝑓 ‖𝐿2

𝑇 (𝐻𝑘 )
)

and
sup
𝑡∈[0,𝑇]

‖𝜕𝑡𝑢(·, 𝑡)‖𝐻𝑘−1 ≤ 𝐶
(
‖𝑔‖𝐻𝑘 + ‖ 𝑓 ‖𝐿2

𝑇 (𝐻𝑘 ) + ‖ 𝑓 ‖𝐿∞𝑇 (𝐻𝑘−1)
)

Proof. Recall that the approximate problem reads{
𝜕𝑡𝑢𝜀 +ℳ𝜀𝑢𝜀 = (𝐴0)−1𝐾𝜀 𝑓 ∈ 𝐿∞(𝐻 𝑘)
𝑢𝜀(𝑡 = 0) = 𝑔 ∈ 𝐻 𝑘

where
ℳ𝜀𝑣 := (𝐴0)−1𝐾𝜀

[
𝐴 𝑗𝜕𝑗𝐾𝜀𝑣

] + (𝐴0)−1𝐵𝑣.

One can show that the higher regularity of 𝐴 𝑗 , 𝐵 implies that

ℳ𝜀 ∈ 𝐿∞([0, 𝑇];ℒ(𝐻 𝑘)).
Then the ODE result shows that

𝑢𝜀 ∈ 𝐶0,1
𝑏 ([0, 𝑇];𝐻 𝑘) ∩𝑊1,∞((0,∞);𝐻 𝑘).

We can then apply 𝜕𝛼 for 𝛼 ∈ N𝑛 with |𝛼 | ≤ 𝑘 and argue as before to show that

𝜕𝑡
©«
∑
|𝛼 |≤𝑘

∫
R𝑛
𝐴0𝜕𝛼𝑢𝜀 · 𝜕𝛼𝑢𝜀ª®¬ ≤ 𝐶 ©«

∑
|𝛼 |≤𝑘

∫
R𝑛
𝐴0𝜕𝛼𝑢𝜀 · 𝜕𝛼𝑢𝜀ª®¬ + ‖ 𝑓 ‖2

𝐻𝑘

Then solving for 𝜕𝑡𝑢𝜀 and arguing as before finishes. �
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Theorem (Higher regularity, temporal derivatives). Now suppose that 𝑘 ≥ 2, 𝐴 𝑗 , 𝐵 ∈ 𝐶𝑘−1,1
𝑏 (R𝑛 ×

[0, 𝑇]), 𝑔 ∈ 𝐻 𝑘 , 𝑓 ∈ 𝐿2
𝑇(𝐻 𝑘) with

𝜕ℓ𝑡 𝑓 ∈ 𝐿∞𝑇 (𝐻 𝑘−1−ℓ ) for ℓ = 0, · · · , 𝑘 − 1.

Then

sup
𝑡∈[0,𝑇]

𝑘∑
ℓ=0

𝜕ℓ𝑡𝑢(·, 𝑡)𝐻𝑘−ℓ ≤ 𝐶
[
‖𝑔‖𝐻𝑘 + ‖ 𝑓 ‖𝐿2

𝑇 (𝐻𝑘 )
]
+

𝑘−1∑
ℓ=0

𝜕ℓ𝑡 𝑓 𝐿∞𝑇 (𝐻𝑘−1−ℓ ) .

Corollary. If we pick 𝑘 large enough in the previous theorem, then 𝑢 is a classical solution; i.e., 𝑢 ∈ 𝐶1
𝑏 (R𝑛×

[0, 𝑇];R𝑚) and {
𝐴0𝜕𝑡𝑢 + 𝐴 𝑗𝜕𝑗𝑢 + 𝐵𝑢 = 𝑓 everywhere in R𝑛 × [0, 𝑇]
𝑢(𝑡 = 0) = 𝑔

(See the Aubin-Lions-Simon space-time compactness lemma).

Now let’s revisit the previous examples we had.

Example 1 (Wave Equations). Recall that we had the system
𝛼𝜕2

𝑡 𝑢 + 𝜅𝜕𝑡𝑢 − 𝐴 : 𝐷2𝑢 + 𝑏 · ∇𝑢 + 𝑐𝑢 = 𝑓

𝑢(𝑡 = 0) = 𝑢0

𝜕𝑡𝑢(𝑡 = 0) = 𝑣0

(1)

Which led to the matrices

𝐴0 =
©«
1 0
0 𝛼

0

0 𝐴

ª®®¬ , 𝐴 𝑗 =

©«

0 0

0

0 −𝑎1𝑗 · · · −𝑎𝑛𝑗
−𝑎1𝑗
· · ·
−𝑎𝑛𝑗

0

ª®®®®®®¬
, 𝐵 =

©«
0 −1
𝑐 𝜅

0 · · · 0
𝑏1 · · · 𝑏𝑛

0 0

ª®®¬ , 𝐹 =
©«
0
𝑓
0

ª®®¬
We saw before that if 𝑢 solves (1), then𝑈 :=

©«
𝑢
𝜕𝑡𝑢
∇𝑢

ª®®¬ solves


𝐴0𝜕𝑡𝑈 + 𝐴 𝑗𝜕𝑗𝑈 + 𝐵𝑈 = 𝐹

𝑈(𝑡 = 0) =
©«
𝑢0

𝑣0

∇𝑢0

ª®®®¬
. (2)

Now suppose we go the other way around, and use our theory to solve (2). Then using the second condition,
we can reverse engineer the system to see that

𝑢 = 𝑈1 , 𝜕𝑡𝑢 = 𝑈2 ,∇𝑢 =
©«
𝑈3
· · ·
𝑈𝑛+2

ª®®¬
and that 𝑢 solves the original formulation.
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Example 2 (Maxwell’s equations). Recall Maxwell’s equations again, which read
div 𝐵 = 0
div𝐸 = 𝜌

𝜕𝑡𝐸 + 𝐽 = curl 𝐵
𝜕𝑡𝐵 = − curl𝐸

.

We saw previously that any solution to these equations satisfy
𝜕𝑡𝜌 + div 𝐽 = 0

𝜕𝑡

(
𝐸

𝐵

)
+

3∑
𝑗=1

(
0 −𝑀 𝑗

𝑀 𝑗 0

)
𝜕𝑗

(
𝐸

𝐵

)
=

(
−𝐽
0

)
(3)

for appropriately chosen antisymmetric 𝑀 𝑗 ∈ R3×3. Again using our theory to solve the latter for 𝑈 ∈ R6,

and setting
(
𝐸
𝐵

)
= 𝑈 exactly as in the previous example, we see again that

{
𝜕𝑡𝐸 + 𝐽 = curl 𝐵
𝜕𝑡𝐵 = − curl𝐸

.

Now suppose that 𝜌, 𝐽 are given and satisfy

𝜕𝑡𝜌 + div 𝐽 = 0.

Applying the divergence to our dynamics equations implies that{
𝜕𝑡 div𝐸 + div 𝐽 = 0 =⇒ 𝜕𝑡(div𝐸 − 𝜌) = 0 =⇒ div𝐸 − 𝜌 = div𝐸0 − 𝜌0

𝜕𝑡 div 𝐵 = 0 =⇒ div 𝐵 = div 𝐵0
,

Hence if our data satisfies

{
div 𝐵0 = 0
div𝐸0 = 𝜌0

, then

{
div 𝐵 = 0
div𝐸 = 𝜌

in R𝑛 × [0, 𝑇].
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