Asymptotic Analysis For Lattice Walks Derived From Zeckendorf Decompositions

Jonathan Jenkins, Ethan Lu, Steven J. Miller, Joshua M. Siktar, Peter Yu
Carnegie Mellon University, University of Tennessee, Williams College, Yale University

19th International Fibonacci Conference
sjm1@williams.edu

July 23, 2020

- Introduction to the Lattice Walks
- Overview of Main Results and Simulations
- Technical Lemmas
- Proof of Main Results
- Future Work

Definition (Fibonacci Numbers)
 The Fibonacci Numbers are a sequence defined recursively with $F_{n+1}=F_{n}+F_{n-1} \forall n \geq 2$ where $F_{1}=1$ and $F_{2}=2$.

Beginning of sequence: $1,2,3,5,8,13,21,34,55, \ldots$

Definition (Zeckendorf Decompositions)

A Zeckendorf Decomposition is a way to write a natural number as the sum of non-adjacent Fibonacci Numbers. They also give an alternative definition for the Fibonacci Numbers.

Theorem (Zeckendorf's Theorem)

Every natural number has a unique Zeckendorf Decomposition.
Example (Greedy Algorithm):

- 335
- $335=233+102$
- $335=233+89+13$

Definition (Simple Jump Paths (in 2D))

A simple jump path is a path on the lattice grid where each movement on the lattice grid consists of at least one unit movement to the left and one unit movement downward.

Examples of simple jump paths (from $(7,7)$ to $(0,0)$)

							1
						2	
				3			
			4				
	5						
6							

							1
					2		
		3					
4							

- We count simple jump paths from (a, b) to $(0,0)$, where $a, b \in \mathbb{N}^{+}$
- Let the number of simple jump paths from (a, b) to $(0,0)$ be denoted $s_{a, b}$; always include (a, b) and $(0,0)$
- Let the number of simple jump paths from (a, b) to $(0,0)$ with k steps be denoted $t_{a, b, k}$
- Analogue in $d=1$ resembles base-2 expansion

Theorem (E. Chen, R. Chen, L. Guo, C. Jiang, S.M., J.S.,

P.Y.)

Simple Path Gaussianity on d-dimensional Lattice: Let n be a positive integer, and consider the distribution of the number of summands among all simple jump paths with starting point $\left(p_{1}, p_{2}, \ldots, p_{d}\right)$ where $1 \leq p_{1}, p_{2}, \ldots, p_{d} \leq n$, and each path represents a (not necessarily unique) decomposition of some positive number. This distribution converges to a Gaussian as $n \rightarrow \infty$ with mean $\frac{1}{2} n+1$ and standard deviation $\frac{\sqrt{n}}{2 \sqrt{d}}$.

- Easiest to visualize what is going on when $d=2$
- Simple jump paths over a square lattice for $n=10$, starting point $(10,10)$
- Plotted points represent $\left\{t_{10,10, k}\right\}_{k=1}^{10}$, with best-fit Gaussian

Simulations and Explanation of Main Result Statements

- Simple jump paths over a rectangular lattice with starting point $(70,30)$
- Plotted points represent $\left\{t_{30,70, k}\right\}_{k=1}^{30}$, with best-fit Gaussian

Counting Simple Jump Paths

Lemma (Simple Jump Path Partition Lemma)

If $s_{d}(n)$ denotes the number of d-dimensional paths from (n, n, \ldots, n) to the origin and $t_{d}(n, k)$ denotes the number of such paths with k steps, then $s_{d}(n)=\sum_{k=1}^{n} t_{d}(n, k)$.

- Here $t_{d}(n, k)$ denotes the number of simple jump paths of k steps starting from point (n, n, \ldots, n) in d-dimensions

Counting Simple Jump Paths

Lemma (The Cookie Problem)

The number of ways of dividing C identical cookies among P distinct people is $\binom{C+P-1}{P-1}$.

Lemma (Enumerating Simple Jump Paths in d-dimensions)

$\forall n \in \mathbb{N}, 1 \leq k \leq n, t_{d}(n, k)=\binom{n-1}{k-1}^{d}$.

- Every $\binom{n-1}{k-1}$ is the number of ways to group k objects into n nonempty groups
- Groupings are independently determined, use Cookie Problem lemma

Useful formulas and notation:

- $p\left(x_{k}\right)$: probability of event x_{k} occurring, one of finitely many values (events)
- Density function: $f_{d}(k, n):=\frac{t_{d}(n+1, k+1)}{s_{d}(n+1)}=\frac{\binom{n}{k}^{d}}{s_{d}(n+1)}$
- Mean (discrete): $\mu=\sum x_{k} p\left(x_{k}\right)$
- Variance (discrete): $\sigma^{2}=\sum\left(x_{n}-\mu\right)^{2} p\left(x_{n}\right)$
- Gaussian (continuous): Density

$$
\left(2 \pi \sigma^{2}\right)^{-1 / 2} \exp \left(-(x-\mu)^{2} / 2 \sigma^{2}\right)
$$

Lemma (Mean on d-dimensional Lattice)

$\forall n \in \mathbb{N}^{+}, \mu_{d}(n+1)=\frac{1}{2} n+1 \sim \frac{n}{2}$.

- The mean is independent of d

Lemma (Standard Deviation on Square Lattice)

$\forall n \in \mathbb{N}^{+}, \sigma_{1}(n+1)=\frac{\sqrt{n}}{2}, \sigma_{2}(n+1)=\frac{n}{2 \sqrt{2(n-1)}} \sim \frac{\sqrt{n}}{2 \sqrt{2}}$.

- Calculate using definition of first moment (mean) and second moment (standard deviation)
- Use index shift: $\sum_{k=1}^{n+1}$ becomes $\sum_{k=0}^{n},\binom{n}{k-1}$ becomes $\binom{n}{k}$
- Use binomial expansion and standard techniques for evaluating binomial coefficients

Lemma (Standard Deviation on d-dimensional Lattice)

$\forall d \geq 2, n \in \mathbb{N}^{+}, \sigma_{d}(n+1) \leq \sigma_{1}(n+1) \leq \frac{\sqrt{n}}{2}$

- We weren't able to find closed-form expression for σ in higher dimensions
- For example, the evaluation of $\sum_{k=0}^{n} k^{d}\binom{n}{k}^{d}$ cannot be generalized for $d>2$
- The variance decreases as d increases, and it is largest when $d=1$, proven using symmetry of binomial coefficients
- In fact, it holds that $\sigma_{d}(n+1) \sim \frac{\sqrt{n}}{2 \sqrt{d}}$

Lemma (Bounding the random variable)

Consider all simple jump paths from $(n+1, n+1, \ldots, n+1)$ to the origin in d-dimensions. If K is the random variable denoting the number of steps in each path, then the probability that K is at least $\frac{n^{\epsilon} \sqrt{n}}{2}$ from the mean is at most $n^{-2 \epsilon}$.

- By Chebyshev's Inequality,

$$
\operatorname{Prob}\left(\left|K-\mu_{d}\right| \geq n^{\epsilon} \sigma_{d}(n+1)\right) \leq \frac{1}{n^{2 \epsilon}}
$$

- As $\sigma_{d} \leq \frac{\sqrt{n}}{2}$ by the previous lemma, we only decrease the probability on the left if we replace $\sigma_{d}(n+1)$ with $\frac{\sqrt{n}}{2}$
- If we write K as $\mu_{d}(n+1)+l \cdot \frac{\sqrt{n}}{2}$, then with probability tending to 1 we may assume $|I| \leq n^{\epsilon}$

Theorem (Simple Path Gaussianity on d-dimensional Lattice)

Let n be a positive integer, and consider the distribution of the number of summands among all simple jump paths with starting point $\left(p_{1}, p_{2}, \ldots, p_{d}\right)$ where $1 \leq p_{1}, p_{2}, \ldots, p_{d} \leq n$, and each distribution represents a (not necessarily unique) decomposition of some positive number. This distribution converges to a Gaussian as $n \rightarrow \infty$ with mean $\frac{1}{2} n+1$ and standard deviation $\frac{\sqrt{n}}{2 \sqrt{d}}$.

- Write k as $\mu_{d}(n+1)+l \cdot \frac{\sqrt{n}}{2}$, l is the number of standard deviations from the mean
- Density function: $f_{d}(n+1, k+1):=\frac{t_{d}(n+1, k+1)}{s_{d}(n+1)}=\frac{\binom{n}{k}^{d}}{s_{d}(n+1)}$
- Use Stirling's Approximation on each factor: $m!\sim m^{m} e^{-m} \sqrt{2 \pi m}$
- End result of Stirling expansion is $f_{d}(n+1, k+1)=$ $\frac{2^{d n} n^{d / 2}}{s_{d}(n+1)}\left(\frac{n^{n}}{2^{n} k^{k}(n-k)^{n-k} \sqrt{2 \pi k(n-k)}}\right)^{d} \cdot\left(1+O\left(\frac{1}{n}\right)\right)$
- Since $k, n-k$ are close to $n / 2$, the main term becomes

$$
\begin{aligned}
f_{\text {main }} & :=\frac{n^{n}}{2^{n} k^{k}(n-k)^{n-k} \sqrt{2 \pi k(n-k)}} \\
& =\frac{1}{\sqrt{\frac{\pi n^{2}}{2}}} \cdot \frac{1}{\left(1-\frac{1}{\sqrt{n}}\right)^{\frac{n-l \sqrt{n}+1}{2}}\left(1+\frac{1}{\sqrt{n}}\right)^{\frac{n+l \sqrt{n}+1}{2}}}
\end{aligned}
$$

- Denote the denominator of the second fraction as q_{n+1}, approximate it using Taylor expansion
- Eventually we get $q_{n+1}=e^{\frac{\left(k-\mu_{d}(n+1)\right)^{2}}{n / 2}} \cdot e^{O\left(n^{-1 / 6}\right)}$
- Then, for $|I| \leq n^{1 / 9}$,

$$
f_{d}(n+1, k+1)=\frac{2^{d n} n^{d / 2}}{s_{d}(n+1)\left(\pi n^{2} / 2\right)^{d / 2}} \cdot e^{-\frac{d\left(k-\mu_{d}(n+1)\right)^{2}}{n / 2}} e^{O\left(n^{-1 / 6}\right)}
$$

- The second exponential is negligible as $n \rightarrow \infty$; the first exponential is Gaussian with mean $\mu_{d}(n+1)$ and variance $\sigma_{d}(n+1)^{2}=\frac{n}{4 d}$
- The normalization constant is
$s_{d}(n+1) \sim 2^{d n}\left(\frac{\pi n}{2}\right)^{\frac{1-d}{2}} d^{-\frac{1}{2}}$

Definition (Generalized Jump Paths (in 2D))

A generalized jump path is a path on the lattice grid where each movement on the lattice grid consists of either at least one unit movement to the left or one unit movement downward.

Examples of generalized jump paths (from $(7,7)$ to $(0,0)$)

							1
						2	
				3			
			4				
			5				
6							

					2		1
		3					
4							

Theorem (E. Fang, J.J., Z. Lee, D. Li, E. Lu, S.M., D.S. J.S.)

Generalized Path Gaussianity on 2-dimensional Lattice: Let $g((p, q), k)$ denote the number of generalized jump paths from the point (p, q) using exactly k moves. As $p, q \rightarrow \infty$, $g((p, q), k)$ is Gaussian with respect to k.

- $g(\mathbf{p}, k)$ is Generalized Jump Paths from \mathbf{p} with k moves
- $u(\mathbf{p}, k)$ counts paths that don't necessarily end at $(0,0)$.
- $u(\mathbf{p}, k)=g(\mathbf{p}, k)+g(\mathbf{p}, k+1)$

In 2 dimensions,

$$
\begin{aligned}
u((p, q), k) & =u((p, q-1), k)+u((p, q-1), k-1) \\
& +u((p-1, q), k)+u((p-1, q), k-1) \\
& -u((p-1, q-1), k)-u((p-1, q-1), k-1)
\end{aligned}
$$

- Let $F_{p, q}(x)=u((p, q), k) x^{k}$

Claim

$$
F_{p, q}(x)=(1+x)^{p} \sum_{k=0}^{q}\binom{q}{k}\binom{p+k}{k} x^{k}
$$

Counting Lemma Statements

Combinatorics Method

- Let $r(\mathbf{p}, n)$ be defined identically to $g(\mathbf{p}, n)$ but allowing stationary points
- Let $s(\mathbf{p}, n, k)$ correspond to $r(\mathbf{p}, n)$ where there are at least k stationary points
By Stars and Bars,

$$
r(\mathbf{p}, n)=\prod_{i=1}^{d}\binom{p_{i}+n-1}{p_{i}}
$$

- Observe $s(\mathbf{p}, n, k)=\binom{n}{k} r(p, n-k)$

Then by inclusion-exclusion,

$$
g(\mathbf{p}, n)=\sum_{k=0}^{n-1}(-1)^{k}\binom{n}{k} r(\mathbf{p}, n-k)
$$

Counting Lemma Statements

Combinatorics Method

Current Result

In 2-D,
$g((p, q), n)=\sum_{i=0}^{n}(-1)^{k}\binom{n}{i}\binom{(p-1)+n-i}{(n-1)-i}\binom{(q-1)+n-i}{(n-1)-i}$
where WLOG $p \leq q$

Simplification

Inner term counts (S, T, U) such that

- $S \subseteq[n], T \subseteq[p+n-1] \backslash S, U \subseteq[q+n-1] \backslash S$
- $|S|+|T|=|S|+|U|=n-1$

Define f where f toggles minimum term of $S \cup(U \cap T)$

- f is it's own involution
- f flips parity of $|S|$
- Ordered pairs defined on f sum to 0
- Only need to sum if f not well-defined

Counting Lemma Statements

Combinatorics Method

Let the set where f is not well-defined be E. Then, we can conclude

$$
\sum_{i=0}^{n}(-1)^{k}\binom{n}{i}\binom{(p-1)+n-i}{(n-1)-i}\binom{(q-1)+n-i}{(n-1)-i}=|E|
$$

f is not well-defined if and only if

- $S=\varnothing$
- $T \cap U \cap[n]=\varnothing$

Basic combinatorial arguments then yield

$$
g((p, q), n)=\sum_{i=0}^{n-1}\binom{p-1}{i}\binom{p-1+n-i}{p}\binom{q}{n-i-1}
$$

Counting Lemma Statements

Combinatorics Method

- Use $u((p, q), n)=g((p, q), n)+g((p, q), n+1)$

$$
u((p, q), n)=\sum_{i=0}^{n}\binom{p}{i}\binom{p+n-i}{p}\binom{q}{n-i}
$$

- Plugging into $F_{p, q}(x)$:

$$
F_{p, q}(x)=(1+x)^{p} \sum_{k=0}^{q}\binom{q}{k}\binom{p+k}{k} x^{k}
$$

Setup

- $X_{p, q}$ is random variable counting length of path
- A, B random variables,

$$
P(A=k) \propto\binom{p}{k}, P(B=k) \propto\binom{q}{k}\binom{p+k}{k}
$$

- $X_{p, q}=A_{p, q}+B_{p, q}$ by previous result

Goals

Well Known

A is Gaussian with mean $\frac{p}{2}$, standard $\operatorname{dev} \frac{p}{4}$

Theorem

B is Gaussian with mean $\frac{q-p+\sqrt{p^{2}+6 p q+q^{2}}}{4}$
The proofs are routine calculations.

Outline

- Use Stirling's Approximation
- Set $k=a n+t \sqrt{n}$ where a is mean and standard deviation is $O(\sqrt{n})$.
- Taylor Expansion about $\frac{t}{\sqrt{n}}$
- Show probability $|t|>n^{0.1} \rightarrow 0$ as $n \rightarrow \infty$

Final Results

- The number of generalized jump paths is Gaussian with respect to the number of jumps.
- Mean: $\frac{p+q}{4}+\frac{\sqrt{p^{2}+6 p q+q^{2}}}{4}$
- Variance: $\frac{p+q}{8}+\frac{(p+q)^{2}}{8 \sqrt{p^{2}+6 p q+q^{2}}}$

Future Work

- Work out expected Gaussianity result for compound paths in higher dimensions
- Investigate rates of convergence to Gaussian
- What happens if we allow points on lattice to be visited more than once?
- E. Chen, R. Chen, L. Guo, C. Jiang, S.J. Miller, J.M. Siktar, P. Yu, Gaussian Behavior in Zeckendorf Decompositions from Lattices (URL:
https://arxiv.org/pdf/1809.05829.pdf)
- E. Fang, J. Jenkins, Z. Lee, D. Li, E. Lu, S.J. Miller, D. Salgado, J.M. Siktar Central Limit Theorems for Compound Paths on the 2-Dimensional Lattice (URL:
https://arxiv.org/pdf/1906.10645.pdf)
- H. Alpert, Differences of Multiple Fibonacci Numbers, October 20, 2009
- I. Badinskki, C. Huffaker, N. Mccue, C. Miller, K. Miller, S. Miller, M. Stone, The M\&M Game: From Morsels to Modern Mathematics, September 3, 2015
- O. Beckwith, A. Bower, L. Gaudet, R. Insoft, S. Li, S. Miller, P. Tosteson, The Average Gap Distribution For Generalized Zeckendorf Decompositions, Fibonacci Quarterly, December 12, 2012.
- I. Ben-Ari, S. Miller, A Probabilistic Approach to Generalized Zeckendorf Decompositions, SIAM Journal on Discrete Mathematics, 30 (2016), no. 2, 1302-1332.
- A. Best, P. Dynes, X. Edelsbrunner, B. McDonald, S. Miller, K. Tor, C. Turnage-Butterbaugh, M. Weinstein, Gaussian Behavior of the Number of Summands in Zeckendorf Decompositions in Small Intervals, Fibonacci Quarterly, 52 (2014), no. 5, 47-53.
- A. Bower, R. Insoft, S. Li, S. Miller, P. Tosteson, The Distribution of Gaps Between Summands in Generalized Zeckendorf Decompositions, Journal of Combinatorial Theory, 135 (2015), 130-160.
- J. L. Brown, Jr., Zeckendorf's Theorem and Some Applications, The Fibonacci Quarterly, Vol. 2, No. 3 (Oct. 1964), pages 163-168.
- L. Cano, R. Diaz, Continuous Analogues for the Binomial Coefficients and the Catalan Numbers, March 22, 2016
- M. Catral, P. Ford, P. Harris, S. Miller, D. Nelson, Generalizing Zeckendorf's Theorem: The Kentucky Sequence, Fibonacci Quarterly, 52 (2014), no. 5, 68-90.
- M. Catral, P. Ford, P. E. Harris, S. J. Miller, and D. Nelson, Legal Decompositions Arising from Non-positive Linear Recurrences, Fibonacci Quarterly 54 (2016), no. 4, 3448-365.
- M. Catral, P. Ford, P. E. Harris, S. J. Miller, D. Nelson, Z. Pan and H. Xu, New Behavior in Legal Decompositions Arising from Non-positive Linear Recurrences, Fibonacci Quarterly 55 (2017), no. 3, 252-275 (expanded arXiv version: http://arxiv.org/pdf/1606.09309).
- D. E. Daykin, Representation of Natural Numbers as Sums of Generalized Fibonacci Numbers, J. London Mathematical Society 35 (1960), 143-160.
- P. Demontigny, T. Do, A. Kulkarni, S. Miller, D. Moon, U. Varma, Generalizing Zeckendorf's Theorem to f-Decompositions, Journal of Number Theory, 141 (2014), 136-158.
- R. Doward, P. Ford, E. Fourakis, P. Harris, S. Miller, E. Palsson, H. Paugh, New Behavior in Legal Decompositions Arising From Non-Positive Linear Recurrences, September 10, 2015
- M. Drmota and J. Gajdosik, The distribution of the sum-of-digits function, J. Théor. Nombrés Bordeaux 10 (1998), no. 1, 17-32.
- S. Eger, Stirling's Approximation for Central Extended Binomial Coefficients, American Mathematical Monthly, 121 (2014), no. 4, 344-349, http://arxiv.org/pdf/1203.2122.pdf.
- P. Filipponi, P. J. Grabner, I. Nemes, A. Pethö, and R. F. Tichy, Corrigendum to: "Generalized Zeckendorf expansions", Appl. Math. Lett., 7 (1994), no. 6, 25-26.
- A. S. Fraenkel, Systems of Numeration, Amer. Math. Monthly 92 (1985), no. 2, 105-114.
- P. J. Grabner, R. F. Tichy, I. Nemes, and A. Pethö, Generalized Zeckendorf expansions, Appl. Math. Lett. 7 (1994), no. 2, 25-28.
- V. Guo, J. Zeng New Congruences for Sums Involving Apery Numbers or Central Delannoy Numbers, International Journal of Number Theory, May 25, 2012
- N. Hamlin, Representing Positive Integers as a Sum of Linear Recurrence Sequences, Fibonacci Quarterly 50 (2012), no. 2, 99-105.
- N. Hamlin and W. A. Webb, Representing positive integers as a sum of linear recurrence sequences, Fibonacci Quarterly 50 (2012), no. 2, 99-105.
- E. Hart, The Zeckendorf Decomposition of Certain Fibonacci-Lucas Products, Fibonacci Quarterly, November 1998
- E. Hart, L. Sanchis, On The Occurrence Of Fn in The Zeckendorf Decomposition of nFn, February 1997
- V. E. Hoggatt, Generalized Zeckendorf theorem, Fibonacci Quarterly 10 (1972), no. 1 (special issue on representations), pages 89-93.
- M. Kanovich, Multiset Rewriting Over Fibonacci and Tribonacci Numbers, Journal of Computer and System Sciences, September 2014
- T. J. Keller, Generalizations of Zeckendorf's theorem, Fibonacci Quarterly 10 (1972), no. 1 (special issue on representations), pages 95-102.
- M. Kologlu, G. Kopp, S. Miller, Y. Wang, On the Number of Summands in Zeckendorf Decompositons, Journal of Number Theory, August 19, 2010.
- C. Krattenhaler, Lattice Path Enumeration, April 17, 2015
- M. Lamberger and J. M. Thuswaldner, Distribution properties of digital expansions arising from linear recurrences, Math. Slovaca 53 (2003), no. 1, 1-20.
- C. G. Lekkerkerker, Voorstelling van natuurlyke getallen door een som van getallen van Fibonacci|, Simon Stevin 29 (1951-1952), 190-195.
- T. Lengyel, A Counting Based Proof of the Generalized Zeckendorf's Theorem, Fibonacci Quarterly 44 (2006), no. 4, 324-325.
- T. Mansour, A. Munagi, M. Shattuck Recurrence Relations and Two Dimensional Set Partitions, Journal of Integer Sequences, March 26, 2011
- S. Miller, Y. Wang, From Fibonacci Numbers to Central Limit Type Theorems, Journal of Combinatorial Theory, Series A 119 (2012), no. 7, 1398-1413.
- S. Miller, Y. Wang, Gaussian Behavior in Generalized Zeckendorf Decompositions, July 14, 2011
- S. Miller, The Probability Lifesaver, 2017
- S. Miller, 2018 Summer Research Program for Talented High School Students, Lecture I, June 11, 2018
- W. Steiner, Parry expansions of polynomial sequences, Integers, 2 (2002), Paper A14.
- W. Steiner, The Joint Distribution of Greedy and Lazy Fibonacci Expansions, Fibonacci Quarterly, 43 (2005), 60-69.
- E. Zeckendorf, Représentation des nombres naturels par une somme des nombres de Fibonacci ou de nombres de Lucas, Bulletin de la Société Royale des Sciences de Liége 41 (1972), pages 179-182.
- J. Watkins, Moments and Generating Functions, September 29, 2009

Thank You

Thank You

- Yale University Department of Mathematics
- Carnegie Mellon University Department of Mathematical Sciences
- University of Tennessee-Knoxville Department of Mathematics
- Williams College Department of Mathematics and Statistics
- The National Science Foundation
- The organizing committee for the 19th International Fibonacci Conference

Author Contact Information

- Jonathan Jenkins, jt jenkin@andrew.cmu.edu
- Ethan Lu, ethanlu@andrew.cmu.edu
- Steven J. Miller sjm1@williams.edu
- Joshua M. Siktar jsiktar@vols.utk.edu
- Peter Yu peter0201yu@gmail.com

