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1 About
The following is a set of notes I took for my area exam at Stanford. Since it was intended as a way for
me to last-minute review things, everything is written up rather tersely, in particular the section on wave
equations. Regardless, I’ve yet to find a publicly accessible and somewhat-cleanly-written-up version of the
result in 3.3, so hopefully this is a useful reference for that (or for someone trying to crash-course the other
topics). As mentioned in the text, the section on wave equations roughly follows the Holzegel/Luk notes.
The section on fluids roughly follows the Bedrossian-Vicol book, as well as a section of the Majda-Bertozzi
book, and the section on harmonic analysis follows Ch 7-9 of Muscalu-Schlag; see the syllabus posted on
my site for a more precise citation.
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2 Talk abstract
Beginning with the celebrated work of Christodoulou-Klainerman in 1993, the stability of Minkowski space
and other special solutions to the Einstein equations has remained a central focus of mathematical GR.
Motivated by their work as well as further refinements by Lindblad-Rodnianski, Shen, Keir, and many
others, we present a general method for proving small data global existence for a class of quasilinear wave
equations, which includes the Einstein vacuum equations in harmonic gauge. In addition to allowing for
a wider class of initial data than previous results, our method requires commuting with a smaller set of
vector fields than needed for e.g. Klainerman’s Sobolev inequality, which allows us to prove decay using an
elliptic estimate involving the wave operator, as opposed to e.g. the rp method of Dafermos-Rodnianski.

3 Wave Equations and General Relativity

3.1 Local existence and uniqueness for wave equations
Local existence done via Picard iteration and energy estimates. Uniqueness follows from energy estimates.

3.2 Dispersive estimates for linear wave equations
Can be done with exact formulas for the fundamental solution. Can also be done with the following
functional estimate:

Theorem 1 (Klainerman-Sobolev). Let Γ be the full set of commuting vector fields. For any sufficiently smooth ϕ,
we have the pointwise bounds

|∂ϕ(u, v, θ)| ≲ u−1/2v−1
∑

|α|≤4

∥Γα∂ϕ∥L2 .

Furthermore, ∣∣∂ϕ(u, v, θ)
∣∣ ≲ v−3/2

∑
|α|≤4

∥Γα∂ϕ∥L2 .

3.3 Blowup for □u = (∂tu)2

The goal of this section is to show that all global solutions to the equation
□u = (∂tu)2

u(t = 0) = u0

∂tu(t = 0) = u1

(1)

with ui smooth and compactly supported are trivial, implying that all nontrivial solutions blowup in finite
time. Following the Holzegel/Luk notes, we will deduce this via a reduction to spherical means and an
ODE blowup type result.

3.3.1 Preliminaries

We begin with the Darboux equation. For h ∈ C∞(Rn), define

Mh(x, r) := 1
|B(x, r)|

∫
B(x,r)

h(y)dy =
∫
S1
h(x+ rz)dz.

We claim the following:
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Theorem 2. With Mh defined as above, we have

∆xMh(x, r) =
(
∂2

r + n− 1
r

∂r

)
Mh(x, r).

Proof. By definition, we have

|B(0, 1)|
∫ R

0
rn−1Mh(x, r)dr =

∫
|y|≤R

h(x+ y)dy.

Taking ∆x on both sides and integrating by parts, we deduce that

|B(0, 1)|
∫ R

0
rn−1∆xMh(x, r)dr =

∫
|y|≤R

∆xh(x+ y)dy =
∫

|y|≤R

∂i∂ih(x+ y)dy =
∫

|y|=R

yi

R
∂ih(x+ y)dy.

Changing variables to z = y/R, this is further equal to

Rn−1
∫
S1
zi∂ih(x+ rz)dy = |B(0, 1)|Rn−1∂rMh(x, r).

Now taking derivatives with respect to r, we deduce that

Rn−1∆xMh(x, r) = (n− 1)Rn−2∂rMh(x, r) +Rn−1∂2
rMh(x, r)

as desired.

We will also need the following calculation, where all functions are now living in Rn+1:

Lemma 3. If □u = F , then

MF (0, r) = −∂2
tMu(0, r) +

(
∂2

r + n− 1
r

∂r

)
Mu(0, r).

where now MF implicitly also may depend on time.

Proof. For any fixed r, we have

(−∂2
t + ∆x)Mu(x, r) = □xMu(x, r) = M□u(x, r)

so using the previous equation and plugging in x = 0 yields the result.

Finally, we will need the following explicit formula for solutions to the wave equation in 1 + 1 dimensions.

Theorem 4. The solution to the equation □v = F with initial data v(t = 0) = v0 and ∂tv(t = 0) = v1 is given by

v(t, r) = 1
2

[
v0(t− r) + v0(t+ r) +

∫
|r−r′|≤t

v1(r′)dr′ +
∫

T (t,r)
F (t′, r′)dt′r′

]

where T (t, r) := {(t′, r′) | t′ ≤ t, |r − r′| ≤ t− t′} is the backward light cone from (t, r).
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3.3.2 The Proof
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Now suppose we have a global C2 solution of (1), and take R to be such that the initial data is supported
inside of B(x,R). Define v(t, r) := Mu(0, r) and u := t − r. Note that ∂2

r (rv) = r(∂2
r + 2

r∂r)v, so using
lemma 3, we know that rv satisfies the 1 + 1 dimensional wave equation

∂2
t (rv) − ∂2

r (rv) = rF =: rM(∂tu)2

In particular, using Theorem 4 and dividing by r, we have that

v(t0, r0) = 1
2r0

(
Ṽ +

∫
T (r0,t0)

rFdrdt

)

where Ṽ is a solution to □Ṽ = 0 with the correct data. For (t0, r0) ∈ Σ := {r+R < t < 2r}, the contribution
from the homogeneous solution vanishes, and hence

v(t0, r0) = 1
2r0

(∫ t0+r0

T (r0,t0)
rFdrdt

)
= 1

2r0

(∫
T (r0,t0)−T (0,u0)

rFdrdt

)
≥ 1

2r0

(∫
T ∗(r0,t0)

r(∂tv)2drdt

)
(2)

where the last inequality follows from Jensen’s inequality. By positivity, we can further restrict the area of
integration on the right hand side to the set

{u0 < r < r0,−R < u < u0}
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to replace the right hand side by
1

2r0

∫ r0

u0

rdr

∫ r+u0

r−R

(∂tv)2dt.

Now note that

|v(r, r + u0)| =
∣∣∣∣∫ r+u0

r−R

∂tv(r, t)dt
∣∣∣∣ ≤ (u0 +R)1/2

∣∣∣∣∫ (∂tv)2
∣∣∣∣1/2

so plugging this into the previous equation yields

v(t0, r0) ≥ 1
2r0

∫ r0

u0

rdr

∫ r+u0

r−R

(∂tv)2dt ≥ 1
2r0(u0 +R)

∫ r0

u0

rv(r, r + u0)dr

Now define
β(r0) :=

∫ r0

u0

rv(r, r + u0)2dr

and note
β′(r0) = r0v(r0, r + u0)2 ≥ 1

4(R+ u0)r0
β2

by the equation above. Integrating this functional inequality implies that, if β(r0) ̸= 0, then

1
β (r0) ≥ 1

β (r0) − 1
β(r) ≥ 1

4
1

(R+ u0)2 log r

r0

for all r, which is impossible. We conclude that β = 0 in Σ, hence v = 0 in Σ. Now using eq. (2), we deduce
that v ≡ 0 on a full slice, which concludes.

3.4 Null condition and global existence for semilinear problems with slowly decaying
data

Theorem 5. Small data solutions are global.

4 Fluid Mechanics

4.1 Basics
Recall: Eulerian and Lagrangian viewpoints. In Eulerian view, the fundamental quantities to study are the
velocity field u, the density ρ, and the pressure p.
In the Lagrangian viewpoint, the fundamental quantity is the flow map X(t, a) which satisfies the ODE

∂tX(t, a) = u(t,X(t, a)).

We also have the back-to-labels map A which satisfies

A(t,X(t, a)) = a.

Lemma 6. We have the estimate
|∇aX(t, a)| ≤ exp

(∫
∥∇u∥L∞

)
Proof. We first compute that

∂t∂kX
j(t, a) = ∂k∂tX

j(t, a) = ∂ku
j(t,X(t, a)) = ∂lu

j(t,X(t, a)) · ∂kX
l(t, a) ≲ ∥∇u∥

∣∣∂kX
l(t, a)

∣∣
so Gronwall gives the result.
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Lemma 7. The back to labels map satisfies
∂tA+ u · ∇A = 0

Proof. Taking the derivative of the identity x = X(t, A(t, x)) with respect to t yields

−u(t, x) = ∂jX(t, A(t, x))∂tA
j(t, x).

On the other hand, we also have
δi

j = ∂kA
i(t,X(t, a))∂jX

k(t, a)

so contracting the first equation with ∂kA
i(t,X(t, a)) gives

−u · ∇A(t,X(t, a)) = ∂tA
i(t,X(t, a))

which implies the result.

Lemma 8. We have
∥∇A∥L∞ ≲ exp

(∫
∥∇u∥L∞

)
and hence ∣∣∣∣log

(
|a− b|

|X(t, a) −X(t, b)|

)∣∣∣∣ ≤
∫

∥∇u∥L∞ .

Proof. Take a spatial gradient of the equation from the previous lemma, then use chain rule to compute
∂t∇A(t,X(t, a)), substituting the new equation as necessary.

Lemma 9. X(t, ·) induces a volume preserving diffeomorphism iff div u = 0.

Proof. This reduces to showing that the Jacobian determinant of ∇aX(t, a) is constant iff u is divergence
free. Recall that, by Jacobi’s formula,

(detM)′ = tr (adjMM ′) .

Hence

∂t det ∇X(t, a) = tr((adj ∇X(t, a))∂t∇X(t, a))
= tr((adj ∇X(t, a))∇xu(t,X(t, a))∇aX(t, a))
= tr(∇aX(t, a)(adj ∇X(t, a))∇xu(t,X(t, a)))
= det(∇X(t, a)) div u

which is enough.

Theorem 10. Let V be a volume and V (t) be it’s pushforward. Then

∂t

∫
V (t)

f =
∫

V (t)
∂tf + ∇ · (fu)

The Euler equations read {
∂tu+ u · ∇u = −∇p
∇ · u = 0

Lemma 11. Given u, one can recover the pressure via taking the divergence:

−∆p = ∇ · (u · ∇u) = ∂2
ij(uiuj)

so
p = (−∆)−1∂2

ij(uiuj)

which is a Mikhlin multiplier, implying that
∥p∥Lq ≲ ∥u∥2

L2q .
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Vorticity formulation of Euler in 3D:
Dtω = (ω · ∇)u.

Note that 2D solutions can be embedded in 3D by simply assuming no independence on the z coordinate;
using this correspondence, the RHS vanishes in 2D, since ω = (0, 0, ω̄) and all z derivatives of u vanish.
Also note that the velocity can be recovered given the voriticity via the Biot Savart law: u is given by the curl
of a stream function ψ given by ψ = (−∆)−1ω, which can equivalently be written on the Fourier side as

û = iξ

|ξ|2
× ω̂

4.2 Local Well Posedness for Euler and Navier Stokes
4.2.1 The energy estimate for Euler and mollified Euler

Theorem 12. Suppose u is a solution to Euler. Then

d

dt
∥u∥2

Hs ≲ ∥u∥Hs

∥∥∥∇̂u
∥∥∥

L1

Proof. We compute directly that, using the fact that Pu = u and that P is self-adjoint,

d

dt
∥u∥2

Hs = −
∫

⟨∇⟩s
u · (u · ∇) (⟨∇⟩s

u) −
∫

⟨∇⟩s
u · [⟨∇⟩s

, u · ∇]u.

The first term vanishes upon integrating by parts. Now we use the expansions

F [⟨∇⟩s
uµ∂µu](η) =

∫
⟨η⟩s

ûµ(η − ξ)iξµû(ξ)dξ

and
F [uµ∂µ ⟨∇⟩s

u](η) =
∫

⟨ξ⟩s
ûµ(η − ξ)iξµû(ξ)dξ

to substitute into the second term, which becomes∫ ∫
⟨η⟩s

û(η) (⟨ξ⟩s − ⟨η⟩s) û(η − ξ) · iξû(ξ)dξdη.

Now we use the functional inequality

|⟨A⟩s − ⟨B⟩s| ≤ |A−B| (⟨A⟩s−1 + ⟨A−B⟩s−1)

and Young’s convolution inequality to bound all the convolution type terms in L2 by

∥u∥Hs ∥∇u∥L1 ≲ ∥u∥2
Hs .

Theorem 13. Euler is locally well posed in Hs for s > d/2 + 1.

Proof. Consider the mollified version of the equation:

∂tu
ε = JεP((Jεu

ε · ∇)Jεu
ε) =: Fε(u).

We first claim that solutions to this equation exist locally, with the time of existence possibly depending
on ε. To show this, we treat this equation as a Hs valued ODE, noting that Fε is locally Lipschitz with
Lipschitz constant O(ε−1), which allows us to apply Picard’s theorem to deduce local existence. Now using
the energy estimate (which still holds for the mollified equation) we can Gronwall to show that ∥uε∥Hs can
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be estimated uniformly in ε, and hence the existence time can be made independent ε.
Furthermore, by the energy estimate, uε can be shown to be uniformly bounded in Hs and Lipschitz in
Hs−1. We can now show that uε is L2 Cauchy. It suffices to show∥∥uε − uδ

∥∥
L2 (t) ≲ max(ε, δ) ∥u0∥Hs .

To do so, first note that
̂(ϕε − ϕδ) = ϕ̂(εξ) − ϕ̂(δξ) ≲ |ε− δ| |ξ|

which implies
∥(Jε − Jδ)f∥Hs ≲ |ε− δ| ∥f∥Hs+1 .

Now observe that
∂t ∥uε − uδ∥2

L2 =
〈
uε − uδ, Fε(uε) − Fδ(uδ)

〉
.

Using the mollifier properties and expanding the difference of the second term, everything works out. Now
observe by weak compactness, the limit point u ∈ Lip(Hs−1) ∩ L∞(Hs), with the sequence uε converging
weak star. Furthermore, by lower semicontinuity of weak star convergence, u is bounded uniformly in these
spaces.
Using the integral formulation of the Euler equations and the convergence above shows the desired result.

4.3 Continuation Criteria
The above gives us various blowup criteria for the solution; in particular, it shows that the solution can be
continued so long as ∥u∥Hs remains bounded. We now improve this blowup criteria for initial data in Hs,
assuming s is an integer.

Theorem 14. The solution can be continued as long as
∫

∥∇u∥L∞ < ∞.

Proof. Since ∥u∥L2 is conserved, it suffices to show the estimate

d

dt
∥u∥2

Ḣs ≲ ∥u∥Hs ∥∇u∥L∞

so that one can Gronwall and deduce that ∥u∥Ḣs and hence ∥u∥Hs remains bounded. We first recall the
following Gagliardo Nirenberg type inequality:

∥f∥Ẇ i,2m/i ≲ ∥f∥1−i/m
L∞ ∥f∥i/m

Ḣm .

Now we compute that

d

dt
∥∂αu∥L2 = −

∫
∂αu∂αP(u · ∇)u ≲ −

∑
β<α

∫
∂αu((∂βu) · ∇)∂α−βu

(note that the β = α term drops out upon using the fact that u is divergence free). Applying the estimate
above and checking that everything scales correctly concludes.

The above shows that L1L∞ control of ∇u is enough to continue a solution. It turns out that this can be
even further sharpened to only asking for control over the vorticity.

Theorem 15 (Beal-Kato-Majda). The solution can be continued as long as
∫

∥ω∥L∞ < ∞.

Proof. We first show that SIOs are L∞ bounded up to a log loss.

8



Lemma 16. Suppose T is given by a homogenous SIO satisfying the cancellation condition. Then

|Tf | ≲ ∥f∥L2 + ∥f∥L∞ (1 + log+
[f ]C0,α

∥f∥∞ ) ≲ ∥f∥L2 + ∥f∥L∞ (1 + log+
∥f∥Hs

∥f∥∞ )

and if f = ∇g, then

|Tf | ≲ ∥g∥L2 + ∥f∥L∞ (1 + log+
∥f∥Hs

∥f∥∞ ).

Proof. Decompose the principal value into scales ≪ 1,≤ 2, and ≥ 2. Use Holder regularity to handle the
singularity at 0, and optimize in the scale chosen.

Now recall from the previous part that

∂t ∥u∥2
Hs ≲ ∥u∥2

Hs ∥∇u∥L∞ .

Since ∇u is given by an SIO + a bounded operator on ω, we have

∂t ∥u∥2
Hs ≲ ∥u∥2

Hs

(
∥u∥L2 + ∥ω∥L∞ (1 + log+

∥f∥Hs−1

∥ω∥L∞
)
)

≲ ∥u∥2
Hs

(
∥u∥L2 + ∥ω∥L∞ (1 + log+

∥u∥Hs

∥ω∥L∞
)
)
.

Integrating this allows one to Gronwall and deduce boundedness of log(1 + ∥u∥Hs).

Note as a consequence of the above and the fact that ∥ω∥L∞ is conserved in 2D (as it’s simply transported
along the flow), we immediately deduce that all solutions to Euler in 2D are global.

4.4 Local existence for NSE
We now consider the problem of constructing solutions to the Navier Stokes equations{

∂tu+ u · ∇u = ν∆u− ∇p
∇ · u = 0

for ν > 0. We first remark that a similar energy estimate holds as for Euler; in fact, the extra heat term comes
with a good sign, so that the estimate reads

d

dt
∥u∥2

Hs + ν ∥∇u∥Hs ≲ ∥u∥Hs

∥∥∥∇̂u
∥∥∥

L1
.

Now we do everything in the same way as Euler, with the mollified analogue of the extra heat term
being Jε∆Jεu

ε. Now since two derivatives are being taken, one loses a factor of ε−2 in establishing local
Lipschitzness of the ODE term, but again this is irrelevant thanks to the energy estimate. Though we don’t
justify it here, we also remark that as ν → 0 it can be shown that the corresponding solution converges in
L2 to the Euler solution, and hence in any smaller Hs norm by interpolation.

4.5 Mild solutions for the Navier-Stokes equations and semigroups
Now we consider the question of local well-posedness in critical spaces for Navier Stokes. Rather than look-
ing at Hs solutions, in these spaces, we will simply require that solutions satisfy the Duhamel formulation
corresponding to a nonlinear heat equation.

Theorem 17. Local well posedness in Ḣ1/2.
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Proof. Suppose ν = 1. The point is to view the equation as a nonlinear heat equation and treat the transport
term perturbatively. We will need the following estimate for the fundamental solution:∥∥et∆∥∥

W k,p→W ℓ,q ≲ t3/2(1/q−1/p)

We write
∂tu− ∇u+ P∇(u⊗ u) = 0,∇ · u = 0

or, equivalently,

u(t) = et∆u0 −
∫ t

0
e(t−τ)∆P∇(u(τ) ⊗ u(τ))dτ =: et∆u0 −

∫
e(t−τ)∆B(u, u).

Now define XT = L4(Ḣ1). It suffices to show the RHS of the above equation admits a fixed point in
XT . Consider the set given by {ρ | ∥ρ∥XT

≤ ε, ∥ρ∥L∞Ḣ1/2 ≤ ∥u0∥Ḣ1 + ε}. This is closed in XT by lower
semicontinuity of weak limits. Now observe by the standard energy estimate and dominated convergence
that ∥∥et∆u0

∥∥
XT

≤
∥∥et∆u0

∥∥
L∞Ḣ1/2

∥∥et∆u0
∥∥

L2Ḣ3/2 → 0

as t → 0, since the energy estimate tells us et∆u0 ∈ L2Ḣ3/2. We can thus fix T such that the LHS is uniformly
less than ε.
We claim now that ∥∥∥∥∫ e(t−τ)∆B(f, g)

∥∥∥∥
XT

≲ ∥f∥XT
∥g∥XT

.

To show this, we note that∥∥∥∥∫ e(t−τ)∆B(f, g)
∥∥∥∥

L4Ḣ1
≲
∥∥∥(t− τ)−3/4 ∥B(f, g)∥Ḣ−1/2

∥∥∥
L4

≲
∥∥∥(t− τ)−3/4 ∥f ⊗ g∥Ḣ1/2

∥∥∥
L4

≲
∥∥∥(t− τ)−3/4 ∥f∥Ḣ1 ∥g∥Ḣ1

∥∥∥
L4

and then we can apply the Hardy-Littlewood-Sobolev inequality.

Theorem 18. Local well posedness in L3.

Proof. We use the auxiliary norm ρ 7→ sup t1/4 ∥ρ∥L6 . By scaling properties of the heat kernel, one can show
the boundedness of the nonlinearity in the same way, then use the same fixed point argument.

4.6 Yudovich theory of vorticity solutions to 2D incompressible Euler
Theorem 19. Local well posedness with vorticity in L1 ∩ L∞.

Proof. We first define a weak solution of the Euler equations with vorticity in L1 ∩ L∞ to be a solution
satisfying ∫ ∫

Dtφω =
∫

t=T

ϕω −
∫

t=0
ϕω

for all test functions ϕ, where v = K ∗ ω in the material derivative. The idea is to construct global smooth
solutions ωε, vε via mollification, then to pass to an appropriate subsequential limit.
The first thing to note is that vε is bounded (since the kernel is nonsingular) and log Lipschitz continuous
uniformly in ∥ω∥L1∩L∞ . This allows us to use Arzela-Ascoli and pass to a subsequential limit. Showing
that the limit is a weak solution then amounts to using the fact that the convergence above can be taken to
be uniform on compact sets (and then using the compact support of any test function).
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5 Harmonic Analysis

5.1 Basic interpolation theorems (Marcinkiewicz, Riesz-Thorin), properties of weak
Lp spaces

Theorem 20 (Riesz-Thorin). Let T be a linear operator that is Lp0 → Lq0 bounded and Lp1 → Lq1 bounded. Then
T is Lpθ → Lqθ bounded, with norm at most ∥T∥1−θ

p0→q0
∥T∥θ

p1→q1
.

Definition 21. The weak Lp space Lp,∞ is the space of functions f for which

sup
λ>0

λµ({f > λ})1/p < ∞

with norm given by the tightest constant such that the above holds.

Lemma 22. Weak Lp spaces are complete.

Theorem 23 (Marcinkiewicz). Suppose T is a quasilinear operator: that is, an operator satisfying |T (f + g)(x)| ≲
|Tf(x)|+ |Tg(x)| for all f, g. Suppose further that T is bounded from Lpi to weak Lqi for i = 0, 1. Then T is bounded
from Lpθ to Lqθ .

5.2 Calderon–Zygmund theory of singular integrals.
Definition 24. Suppose K : Rd \ {0} → C satisfies the following:

(a) |K(x)| ≲ r−d

(b)
∫

|x|>2|y| |K(x) −K(x− y)| dx ≲ 1 for all y.

(c)
∫

r∈[a,b] K(x)dx = 0.

Then K is called a Calderon-Zygmund kernel.

Lemma 25. The principal value of a kernel of the type above, defined via

Tf(x) = lim
ε→0

∫
|x−y|>ε

K(x− y)f(y)dy

is well-defined and L2 bounded.

Proof. To show that the limit exists, note that the integral is equal to∫
|x−y|>ε

K(x− y)(f(y) − f(x))dy

which is dominated pointwise by C |x− y|−d+1, which is integrable near 0.
To show L2 boundedness, it is enough to argue that the Fourier transform of a truncated version of the
kernel is bounded uniformly in the truncation. Towards this, we compute that∫

e−2πixξK(x)χB(0,N)−B(0,1/N)dx =
∫

|x|<|ξ|−1
e−2πixξK(x)χdx+

∫
|x|>|ξ|−1

e−2πixξK(x)χdx.

The first term is controlled by∫
1/N<|x|<|ξ|−1

(e−2πixξ − 1)K(x)dx ≲
∫

1/N<r<|ξ|−1
|ξ| rr−d(rd−1)dr ≲ 1.

11



Changing variables, we also see that the second term is equal to

1
2

(∫
N>|x|>|ξ|−1

e−2πixξK(x)dx−
∫

N>|x|>|ξ|−1
e−2πi(x+ξ/2|ξ|)ξK(x)dx

)

= 1
2

(∫
N>|x|>|ξ|−1

e−2πixξK(x)dx−
∫

N>
∣∣x− ξ

2|ξ|2

∣∣>|ξ|−1
e−2πixξK

(
x− ξ

2 |ξ|2

)
dx

)

≤ 1
2

(∫
N>|x|>|ξ|−1

e−2πixξ(K(x) −K(x− y))dx+
∫

{|x−y|∈(|ξ|−1,N)}⊕{|x|∈(|ξ|−1,N)}
|x|−d

dx

)
≲ 1

where y = ξ
2|ξ|2 .

Lemma 26 (Calderon-Zygmund decomposition). Let f ∈ L1(Rd), λ > 0. Then f can be written as f = g + b,
where ∥g∥L∞ ≤ λ and b =

∑
χQf , where Q ∈ B, a collection of cubes satisfying the bounds

λ ≤ −
∫

Q

|f | ≤ 2dλ, µ(∪B) ≤ ∥f∥L1 /λ.

Proof. Let Bi be the collection of dyadic cubes with side length 2i. Choose i sufficiently large so that
−
∫

Q
|f | < λ for allQ ∈ Bi. For x ∈ Rd, set τ(x) ∈ Z to be the first i such that −

∫
Q

|f | > λ, where x ∈ Q ∈ Bi. Let
B be the collection of all such Q. Then outside of ∪B where τ = ∞, f ≤ λ almost everywhere by Lebesgue
differentiation theorem.

Lemma 27. Operators of the form above are also bounded from L1 to weak L1.

Proof. Let λ > 0 and f = g + b be as in the Calderon-Zygmund decomposition. For Q ∈ B, set f̄Q := −
∫

Q
f

to be the mean of f and fQ := χQ(f − f̄Q), which is f modified to be mean 0 and supported on Q. Observe
that

f = (g +
∑

Q

χQf̄Q) +
∑

Q

fQ =: f1 + f2.

By construction, |f1| ≲ λ, ∥f1∥L1 ≲ ∥f∥L1 , and also ∥f2∥L1 ≲ ∥f∥L1 . Hence

|{Tf > λ}| ≤ |{Tf1 > λ/2}| + |{Tf2 > λ/2}| .

The first term is estimated by

∥Tf1∥2
L2 /λ

2 ≲ ∥f1∥2
L2 /λ

2 ≲ λ ∥f∥L1 /λ
2 = ∥f∥L1 /λ

which is admissible. To control the second term, recall that |supp f2| ≤ ∥f1∥ /λ, so it suffices to estimate

|{Tf2(x) > λ | x /∈ C supp f2}|

where C supp f2 is obtained by taking scaling each Q ∈ B by a factor C and then taking the union. To do
this, we again use an L1 type bound:

|{Tf2(x) > λ/2 | x /∈ C supp f2}| ≤ 2
λ

∫
(C supp f2)c

|Tf2| ≤ 2
λ

∑
Q

∫
(C supp f2)c

|TfQ| .

Now since each fQ is mean 0, for x away from supp f2,

TfQ(x) =
∫
K(x− y)fQ(y)dy =

∫
(K(x− y) −K(x− yQ))fQ(y)dy

12



so integrating this gives∫
(C supp f2)c

|TfQ| =
∫

(C supp f2)c

∫
Q

|(K(x− y) −K(x− yQ))| |fQ(y)| dydx

=
∫

Q

∫
(C supp f2)c

|(K(x− y) −K(x− yQ))| |fQ(y)| dxdy

≲
∫

|fQ(y)| dxdy

where in the last line we use the fact that |x− yQ| > C diamQ > C(y−yQ) so that the Hormander condition
applies with x = x− yQ and y = y − yQ. Summing over all Q gives ∥f∥L1 as desired.

Lemma 28. T is also Holder bounded for functions with compact support.

Proof. Let f ∈ Cα(Rd) be supported inside the unit ball. Then for all |x| ≤ 2,

|Tf(x)| =
∣∣∣∣∫ K(x− y)f(y)

∣∣∣∣ =
∣∣∣∣∫ K(x− y)f(y) − f(x)

∣∣∣∣ ≲ ∫
|x−y|≤3

|x− y|−d |x− y|α ≲ 1

and for all |x| ≥ 3, K ≲ 1 on the support of the convolution, so |Tf(x)| ≲ ∥f∥L1 ≲ 1.
Now let δ := |x− x′| < 1. Then

Tf(x) − Tf(x′) =
∫
K(y)(f(x− y) − f(x′ − y))dy

=
∫

|y|<3δ

K(y)(f(x− y) − f(x) − f(x′ − y) + f(x′))dy +
∫

|y|>3δ

K(y)(f(x− y) − f(x′ − y))dy

and the first term is estimated by ∫
|y|<3δ

|y|−d+α ≲ δα.

To estimate the second term, we let Kδ := χ|x|>3δK be the truncated version of the kernel, and change
variables in the convolution to obtain∫

(Kδ(x− y) −Kδ(x′ − y))f(y) =
∫

(Kδ(x− y) −Kδ(x′ − y))(f(y) − f(x)).

Note also that the first term is supported within |x− y| ≥ 2δ, since |x− x′| = δ. Furthermore, within this
range, by the mean value theorem, we have

Kδ(x− y) −Kδ(x′ − y) = (x− x′) · ∇K(x∗ − y)

for some x∗ in the segment joining x, x′. Now by the triangle inequality, we know that |x∗ − y| differs by
|x− y| by at most δ, and hence is absolutely comparable to |x− y| in this region. We deduce that the second
term is controlled by ∫

|x−y|>2δ

δ |x− y|−d−1 |x− y|α ≲ δα

as desired.

Now we go through some examples.

Lemma 29. Consider the Newton potentials, given by the kernels

K(x) =
{
Cd |x|2−d

d ≥ 3
Cd log |x| d = 2.

Convolution with these kernels defines an inverse to ∆; that is, ∆(K ∗ f) = f for all decaying f .
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Proof. We focus on the case d ≥ 3; the calculation for d = 2 is similar. First we observe that

∇K = x |x|−d
.

Now
∆K(x) =

∫
K(x− y)∆f(y)dy = lim

ε→0

∫
|x−y|>ε

K(x− y)∆f(y)dy.

For each ε we integrate by parts, so that the right hand side is equal to

−
∫

|x−y|>ε

∇f(y) · ∇K +
∫

|x−y|=ε

|x− y|2−d
∂rfr

−d+1dσ

where dσ is the volume form on the unit sphere. The second term is O(ε). The first term may be rewritten
as

−
∫ ∞

ε

∂rf(x+ rξ)r−d+1rd−1dσ → f(x)

as desired.

Lemma 30. With ∆−1 defined as above, ∂2
ij∆−1 is a singular integral operator.

Proof. Use Mikhlin multiplier theorem.

5.3 Littlewood–Paley theory
Definition 31. Let m : Rd → C be a bounded function. The associated multiplier operator Tm is given by

Tmf =
∫
e2πixξm(ξ)f̂(ξ)dξ

and is L2 bounded by Plancherel, with ∥Tm∥2→2 = ∥m∥∞.

Lemma 32. With m as above, if |∂αm(ξ)| ≲ |ξ|−|α| for all |α| ≤ d+ 2, then Tm is Lp bounded for all p ∈ (1,∞).

Proof. By Calderon-Zygmund theory, it suffices to show that

K :=
∑

|i|≤N

m∨
i

decays like r−d (and it’s gradient decays one power better) uniformly in all sufficiently largeN , wheremi is
the multiplier localized to frequencies ∈ [2−i, 2i]. Firstly, we have

|∂αmi(ξ)| ≲ |ξ|−|α| ≲ 2−i|α|, |ξµ∂
αmi(ξ)| ≲ |ξ|−|α| ≲ 2−i(|α|+1)

where in the last bounds we pass to one uniform over the support of mi. Integrating this gives

∥∂αmi(ξ)∥L1 ≲ 2i(d−|α|), ∥ξµ∂
αmi(ξ)∥L1 ≲ 2i(d+1−|α|).

Now fix x, set α = 0, take the inverse Fourier transform, and sum over all µ, 2i ≤ |x|−1 to find∑
2i≤|x|−1

m∨
i (x) ≤

∑
2i≤|x|−1

2id ≲ |x|−d
,

∑
2i≤∇|x|−1

m∨
i (x) ≤

∑
2i≤|x|−1

2id+i ≲ |x|−d−1
.

On the other hand, taking the inverse Fourier transform and summing over all |α| = d+ 2 yields

|m∨
i (x)| ≲ 2−2i |x|−d−2

,∇m∨
i (x) ≲ 2−i |x|−d−2

so summing over all 2i ≥ |ξ|−1 yields the desired estimate.
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We now take a detour to review some probabilistic items that will be of use.

Lemma 33. Let {ai}N
i=1 be such that ∥ai∥ℓ2 = 1 and {ri} be a sequence of iid random signs. Then SN :=

∑
airi

has sub-Gaussian tails, e.g.
P(SN > λ) ≤ e−λ2/2.

Proof. For t > 0 to be fixed later, we have

EetSN =
∏

Eetairi =
∏

cosh(tairi) ≤
∏

e(tairi)2/2 = et2/2.

Now by Chebyshev,
P(SN > λ) = P(etSN > etλ) ≤ et2/2/etλ ≤ e−λ2/2

where the last inequality follows by choosing t = λ.

Theorem 34 (Khinchin). Let {ri} be a sequence of iid random signs. For any p ∈ [1,∞), we have

∥a∥ℓ2 ≲
(
E
∣∣∣∑ riai

∣∣∣p)1/p

≲ ∥a∥ℓ2

uniformly in the length of the sequence a.

Proof. We first show the upper bound. Suppose ∥a∥ℓ2 = 1 and set SN :=
∑
riai. Then by the previous

lemma,
E
∣∣∣∑ riai

∣∣∣p =
∫

P(|SN | > λ)pλp−1dλ ≲
∫
e−λ2/2pλp−1dλ ≲ 1.

Now to show the lower bound, observe by Jensen that(
E
∣∣∣∑ riai

∣∣∣) ≤
(
E
∣∣∣∑ riai

∣∣∣p)1/p

so it suffices to handle the case p = 1. Since ES2
N = E

∑
(riai)2 = ∥a∥ℓ2 , we then have

∥a∥ℓ2 = ES2
N = E |SN |2/3 |SN |4/3 ≤ (E |SN |)2/3(|SN |4)1/3 ≲ (E |SN |)2/3 ∥a∥ℓ2

which is the result.

Theorem 35 (Littlewood-Paley square function). Let Pi be the projection onto frequencies ∼ 2i with a smooth
cutoff ψ. Define the square function Sf(x) := ∥Pi(x)∥ℓ2 . Then for all p ∈ (1,∞),

∥f∥Lp ≍ ∥Sf∥Lp .

Proof. Let {ri} be a sequence of iid random signs. Define the random Fourier multipliermN :=
∑

|i|≤N riψi.
We claim that the corresponding kernel satisfies the hypotheses of the Mikhlin multiplier theorem uniformly
in N . Indeed, by scaling, each ψi satisfies ∂αψ(ξ) ≲ |ξ|−|α| on the support of ψi, and only finitely many ψi

are nonzero at each ξ, so we conclude. Now using the previous result, we have

∫
|Sf(x)|p = lim

N→∞

∫ ∣∣∣∣∣∣
∑

|i|≤N

Pif

∣∣∣∣∣∣
p/2

≤ lim sup
N

∫
E

∑
|i|≤N

riPif

p

≤ lim sup
N

E
∫

(mNf)p ≲ ∥f∥p
Lp .

For the lower bound, we can use duality. Let ψ̄j be a bump function adapted in the same way to scale 2j

such that ψ̄j = 1 on the support of ψj . Then

∥f∥Lp = sup
∥g∥

Lp′ =1
g∈S

⟨f, g⟩ = sup
g

〈
f̂ , ĝ
〉

= sup
g

∑
i

〈
ψj f̂ , ĝ

〉
= sup

g

∑
i

〈
ψj f̂ , ψ̄j ĝ

〉
≤ ∥Sf∥Lp ∥Sg∥Lq ≲ ∥Sf∥Lp .
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5.4 Almost orthogonality
Theorem 36 (Cotlar’s lemma). Let V be a Hilbert space and Tn : V → V be a sequence of operators satisfying the
bound

∥T ∗
i Tj∥ ,

∥∥TiT
∗
j

∥∥ ≤ (γ(i− j))2.

Then ∥
∑
Ti∥ ≤ ∥γ∥ℓ1 .

Proof. Let T :=
∑
Ti andB := sup ∥Tn∥. Consider expanding the product (T ∗T )n. We may bound a typical

term by ∥∥T ∗
i1
T ∗

j1
· · ·T ∗

in
Tjn

∥∥ ≤ ∥Ti1∥ ∥Tjn∥
∏∥∥∥Tjk

T ∗
ik+1

∥∥∥ ≤ B2(
∏

γ(jk − ik+1))2

or, by reassociating, ∥∥T ∗
i1
T ∗

j1
· · ·T ∗

in
Tjn

∥∥ ≤
∏∥∥∥Tjk

T ∗
ik+1

∥∥∥ ≤ (
∏

γ(ik − jk)).

Hence
∥(T ∗T )n∥ ≤

∑
i1,··· ,in,j1,··· ,jn

Bγ(i1 − j1)γ(j1 − i2) · · · γ(jn−1 − in) ≤ NB ∥γ∥2n−1
ℓ1 .

Now by the spectral theorem, ∥T∥ = limn→∞ ∥(T ∗T )n∥1/2n, so we conclude.

Theorem 37 (Schur’s lemma). Consider an operator of the form

Tf(x) =
∫
K(x, y)f(y)dµ(y).

Then

(a) ∥T∥1→1 ≤ supy ∥K(·, y)∥1.

(b) ∥T∥∞→∞ ≤ supx ∥K(x, ·)∥1.

(c) ∥T∥1→∞ ≤ ∥K∥∞.

Theorem 38 (Calderon-Vaillancourt). Consider a ψdo of the form

Tf(x) = eixξa(x, ξ)f̂(ξ)dξ

where a has 2d+ 1 derivatives in both variables uniformly bounded. Then T is L2 bounded.

Proof. Let χ be a function such that it’s integer shifts form a partition of unity. Let ak,ℓ be a truncated to a
neighborhood of k in physical space and ℓ in frequency space, and define

Tk,ℓf(x) =
∫
eixξak,ℓf(ξ)dξ.

It suffices to show that
∥∥∥Tk,ℓT

∗
k+α,ℓ+β

∥∥∥ ≲ α−2d−1β−2d−1 (and the version with the adjoint) since the square
roots of the right hand side are summable.
To show this, note first that T ∗

k,ℓTk′,ℓ′ involves an integral of the form ak,ℓ(x, ξ)ak′,ℓ′(x, η) and is hence 0
unless |k − k′| is small, so it suffices to show decay in |ℓ− ℓ′|.
The kernel associated to this composition is given by∫

e−ix(ξ−η)ak,ℓ(x, ξ)ak′,ℓ′(x, η)

and repeatedly integrating this by parts gives decay in |ξ − η| ∼ |ℓ− ℓ′|.
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Theorem 39 (Hardy). Suppose 0 ≤ s < d/2. Then∥∥∥|x|−s
f
∥∥∥

L2
≲ ∥f∥Ḣs .

Proof. We first prove the estimate assuming f is localized in Fourier space. By scaling, it suffices to prove
the estimate at scale 0, for which it further suffices to show that

Tf(x) = |x|−s
P̃0

is L2 bounded, where P̃0 is a fattened Littlewood-Paley operator. Now we recall Bernstein’s inequality,
which says that

∥f∥Lq ≲ Rd(1/p−1/q).

Now we have that
∥Tf∥L2 ≤

∥∥χ{|x|<1}Tf
∥∥

L2 +
∥∥χ{|x|>1}Tf

∥∥
L2 .

The second term is obviously controlled by ∥f∥L2 . The first term is controlled by∑
i≤0

2−is
∥∥χ{|x|∼2i}f

∥∥
L2 ≲

∑
i≤0

2−is2id/2 ∥f∥L∞ ≲ ∥f∥L2

where the last inequality follows by Bernstein or Sobolev embedding.
Now we consider the estimate assuming f is localized in physical space. We want to prove the estimate

∥ψf∥L2 ≲ ∥f∥Ḣs

for ψ a cutoff supported near |x| = 1. We note that

∥ψf∥2
L2 ≲

∑
k≥0

∥ψPkf∥2
L2 +

(∑
k<0

∥ψPkf∥L2

)2

≲
∑
k≥0

22sk ∥Pkf∥2
L2 +

(∑
k<0

∥Pkf∥L∞

)2

≲ ∥f∥2
Ḣs +

(∑
k<0

2kd/2 ∥Pkf∥L2

)2

≲ ∥f∥2
Ḣs +

(∑
k<0

2k(d/2−s)

)(∑
22sk ∥Pkf∥2

L2

)
≲ ∥f∥2

Ḣs .

Now to proceed to the final result, we use that∥∥∥|x|−s
f
∥∥∥2

L2
≲
∑

ℓ

2−2ℓs ∥ψℓf∥2
L2

≲
∑

ℓ

 ∑
k+ℓ≤0

∥ψℓPkf∥L2

2

+
∑

ℓ

2−2ℓs ∥ψℓP>−ℓf∥2
L2 .

We handle each of these terms in turn. The first term is controlled by

∑
ℓ

 ∑
k+ℓ≤0

2(d/2−s)(ℓ+k)2sk ∥Pkf∥2
L2

2

.
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View this as mapping the function k 7→ 2sk ∥Pkf∥2
L2 with the kernel

K(k, ℓ) = 2(d/2−s)(ℓ+k)1{k+ℓ≤0}.

This isL∞L1 bounded in both directions, so we conclude. For the second, we discard the spatial localization,
so that ∑

ℓ

2−2ℓs ∥ψℓP>−ℓf∥2
L2 ≤

∑
ℓ

2−2ℓs ∥P>−ℓf∥2
L2

≤
∑

ℓ

∑
k>−ℓ

2−2ℓs−2sk22sk ∥Pkf∥2
L2 ≤

∑
k

22sk ∥Pkf∥2
L2

∑
ℓ>−k

2−2ℓs−2sk.
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