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Motivation and Examples



Motivation

Let (M, g) be an asymptotically flat d + 1 dimensional Lorentzian
manifold, and consider the equation

gαβ∂2
αβϕ = N (∂ϕ, ∂ϕ)

ϕ(t = 0) = f
∂tϕ(t = 0) = g

where α, β = 0, 1, 2, . . . , d range over Cartesian coordinates and N
is a quadratic nonlinearity.
What can we say about solutions to the equation?

Our primary motivations will be from the fields of general
relativity and compressible fluids, though similar equations show
up in e.g. electromagnetism or gauge theory.
Primary regime of interest is small data and d = 3, for reasons
that will be expanded on later.
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Examples

Einstein vacuum

Ricµν(g) = 0.

In appropriate coordinate system, takes the form

−1
2(g−1)αβ∂αβgµν + 1

2(g−1)ασ(g−1)βρ∂µgσρ∂βgαν

+ 1
2(g−1)ασ(g−1)βρ∂νgσρ∂αgβµ

− 1
2(g−1)ασ(g−1)βρ∂µgσρ∂νgαβ

+ Fµν(g , ∂g) = 0

with flat solution given by g = diag(−1, 1, 1, 1) (Minkowski).

3



Examples II

Compressible Euler


Dtρ = −ρ∇ · u
Dtu = −∇p

ρ

Dts = 0

where ρ is the density, p = p(ρ) is the pressure, u is the velocity, s
is the entropy, and Dt := ∂t + u · ∇ is the material derivative.
(Can be rewritten as a wave equation for the velocity and
logarithmic density).

The linear wave equation

□ϕ := (−∂2
t + ∆)ϕ = 0

4



Previous Work

1. Stability of Minkowski:
◦ Christodoulou-Klainerman ’93 [1]
◦ Lindblad-Rodnianski ’10 [2]
◦ Keir ’18 [3]
◦ Shen ’23 [4]
◦ Bieri ’10 [5], Hintz-Vasy ’20 [6], Ionescu-Pausader ’22 [7]
◦ . . .

2. Shock formation in Euler:
◦ Christodoulou ’07 [8].
◦ Speck-Holzegel-Luk-Wong ’16 [9]
◦ . . .

3. Wave equations: John ’81 [10], Yu ’24 [11], Lindblad ’08 [12],
Dafermos-Rodnianski ’10 [13], . . .

5



Review of the linear wave equation

Key properties of the linear wave equation:
1. Conservation of energy: ∥∂ϕ(t, ·)∥L2 = ∥∂ϕ(0, ·)∥.
2. Finite speed of propagation: if initial data is ≡ 0 in

“backward light cone”, then solution is 0.
3. Dispersive decay: Near the “wave zone”

{r ≈ t}, |∂ϕ| ∼ t−(d−1)/2

Can be read off from solutions using the fundamental solution, but
for quasilinear problems, need robust methods of e.g. proving
decay.
d = 3 corresponds to critical rate of t−1 decay.
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What does a free wave look like?

Why t−(d−1)/2 decay?
Heuristic picture: solution begins life with support ≈ B(0, 1), and
is propagated along “forward light cone.”

After time t, solution is supported on annulus of radius ≈ t, so
|suppϕ(t, ·)| ≈ td−1.
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Why (d − 1)/2 decay?

After time t, solution is supported on annulus of radius ≈ t, so
|suppϕ(t, ·)| ≈ td−1. On the other hand, ∥∂ϕ(t, ·)∥L2 is conserved,
which is consistent with decay rate above.
Can get improved decay rate for derivatives in direction of
propagation, which will be critical in analyzing the nonlinearity.
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The semilinear problem



General strategy to prove global existence

General method for obtaining global existence for initial data of
size ε3/2:

1. Identify suitable set of weighted vector fields Γ ⊆ TM and
commute to obtain equations for Γkϕ.

2. Bootstrap: assume energy estimates bounds of the form∥∥∥Γk∂ϕ
∥∥∥

L2
≤ O(ε) hold up to some time T∗ < ∞.

3. Use weighted vector fields to obtain pointwise estimates with
improved decay: e.g. |∂ϕ| ≲ ε/t1+δ.

4. Use this to show ∥N ∥L1L2 = O(ε2), hence can improve
energy estimates:∥∥∥Γk∂ϕ

∥∥∥
L2

≤ O(ε3/2) + O(ε2) ≪ O(ε).

5. Conclude T∗ = ∞.
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Obstructions

Consider the equation

□ϕ = −(∂tϕ)2.

In [10], John showed that there are no nontrivial global solutions
when d = 3.
What goes wrong?
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Closing (or not) the bootstrap

Functional estimate: if □ϕ = F , then

∥∂ϕ(T , ·)∥L2 ≤ ∥∂ϕ(0, ·)∥L2 + ∥F∥L1([0,T ];L2) .

Suppose ∥∂ϕ∥L2 ≲ ε =⇒ |∂ϕ| ≤ εt−1. Then∥∥∥(∂tϕ)2
∥∥∥

L1L2
≤ ∥∂ϕ∥L1L∞ ∥∂ϕ∥L∞L2 ≲ ε2 log T ̸= O(ε).

Still can show “almost global” existence, e.g. T∗ ≈ eO(1/ε).
Actually sharp; John’s proof shows T∗ ≤ eO(1/ε).
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Null structure

Consider now Nirenberg’s example: the equation

□ϕ = (∂tϕ)2 − |∇ϕ|2 .

All small data solutions are now global (via change of variable
ψ = eϕ − 1), but why?
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A return to the linear wave equation

Consider choosing coordinates u := t − |x | , v := t + |x | , θ ∈ S2 on
R3+1.
The vector fields ∂v , ∂θ are tangential to the forward light cone
{u = u0}.
In this frame, the nonlinearity above factors as

4∂uϕ∂vϕ−
∣∣ /∇ϕ∣∣2

which decays at rate t−3/2.
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Slower decaying data

Can extend this method to prove small data global existence for
any equation satisfying null condition and some equations
satisfying “weak null condition” say for data in C∞

c (B(0, 1)).
Weakest possible assumption is energy class; that is, solutions for
which

∥∥∥Γk∂ϕ
∥∥∥

L2
< ∞.

Next question: what’s the weakest type of decay for which global
existence still holds?
Actually necessary for some applications: positive mass theorem
says that any compactly supported perturbation of Minkowski is
Minkowski.
(Usual working assumption is Schwarzschild or O(1/r) tails).

14



Target decay class

We consider data satisfying the decay condition

|∂αϕ(0, x)| ≤ ε |x |−δ−|α| (1)

for any δ > 0. Roughly speaking: decay like r−δ, and every
derivative gains you a power. Now

∥∂ϕ∥L2(B(0,R)) ≈ εR1/2−δ,

which is far from bounded.
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Bootstrap issues

Now have to worry about following issues:
1. How do you do energy estimates? Local well posedness?
2. Weaker pointwise estimates: |∂ϕ| ≲ t−1/2−δ,

∣∣∣∂̄ϕ∣∣∣ ≲ t−1−δ

decay, which makes the nonlinearity much worse than L1L2.
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Global existence for semilinear problems

Theorem (L.)

Let d = 3,N ≥ 15, δ > 0, and fix an equation satisfying the null or
weak null conditions. There exists ε0 > 0 such that if initial data
satisfies the target decay condition with ε < ε0 for all |α| ≤ N,
then the solution exists globally in time. Furthermore, we have the
decay rates

1. |∂ϕ| ≲ εt−1,

2.
∣∣∣∂̄ϕ∣∣∣ ≲ εt−1−δ/2.

Remark: there is a much simpler Picard iteration-type proof for
this result, but it requires N = O(1/δ) derivatives, and uses
techniques very different than what we will be using for the
quasilinear problem.
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Energy estimates

Geometric setup: recall we’ve chosen coordinates
u := t − |x | , v := t + |x | , θ ∈ S2 on R3+1.
Consider foliating R3+1 by surfaces of the form
Nτ := {u = τ} ∩ {|x | > 1}.

Nτ

v = v0

∂v

∂u
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The energy identity

Lemma
Suppose ϕ is a solution to □ϕ = F . Then∫

Bulk
∂tϕF =

∫
∂

Tϕ(∂t , ν).

Here ν is the unit normal, and Tϕ is a 2-tensor given by

Tϕ(X ,Y ) = XϕYϕ− ⟨X ,Y ⟩ ⟨∇ϕ,∇ϕ⟩ /2.

Key fact: when boundary component is {t = t0}, RHS is

(∂tϕ)2 +
∑

i
(∂iϕ)2,

and when boundary is Nτ , RHS is

(∂vϕ)2 +
∣∣ /∇ϕ∣∣2 .
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“The energy identity is the only method known to man
that does not lose derivatives.” - J. Zhao.
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Pointwise estimates

How do you actually obtain pointwise estimates?
Consider the following set of vector fields, which generate
(conformal) isometries of Minkowski:

1. Translations: ∂t , ∂i .
2. Scaling: S := t∂t + x i∂i = u∂u + v∂v .
3. Rotations: Ωij := xi∂j − xj∂i .
4. Lorentz boosts: Ω0j := t∂i + xi∂t .
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Fundamental theorem of the vector field method

Theorem (Klainerman’s Sobolev Inequality)

Let Γ be the full set of commuting vector fields. For any
sufficiently smooth ϕ, we have the pointwise bounds

|∂ϕ(u, v , θ)| ≲ u−1/2v−1 ∑
|α|≤4

∥Γα∂ϕ∥L2 .

Furthermore, ∣∣∣∂̄ϕ(u, v , θ)
∣∣∣ ≲ v−3/2 ∑

|α|≤4
∥Γα∂ϕ∥L2 .
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Elliptic estimates

We actually prefer to use an elliptic estimate that requires
commuting with fewer vector fields.

Theorem (Luk, Oh ’23)

Set Γ := {S, ∂t ,Ωij}. Fixing U ≲ R, set A := {u ∼ U, r ∼ R} and
set B to be a enlarged copy of A. Also let s := |α| + |β|. Then we
have the estimate∥∥∥(u∂u)α(r ∂̄)βϕ

∥∥∥
L2(A)

≲
∥∥∥Γ≤sϕ

∥∥∥
L2(B)

+ UR
∥∥∥(u∂u)≤s(r ∂̄)≤s□ϕ

∥∥∥
L2(B)

.
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Ideas for the elliptic estimates

We combine the elliptic estimates above with the following
rescaled Sobolev inequality:

Lemma

∥ϕ∥L∞(BR) ≲ R−d/2 ∑
|α|≤(d+1)/2

∥(R∂)αϕ∥L2(B2R)

in all odd space dimensions d.

This implies the estimates

∥ϕ∥L∞({u∼U,r∼R})

≲ R−3/2U−1/2 ∑
|α|+|β|+|γ|≤5

∥∥∥(u∂u)α(r∂r )βΩγϕ
∥∥∥

L2({u∼U,r∼R})
.
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Finishing the pointwise estimates

Suppose we are in the region r ≫ t. We estimate derivatives in the
following way.

• Good derivatives. By conservation of energy, the integral of∣∣∣Γk ∂̄ϕ
∣∣∣ over any Nτ is of size comparable to data. By the

elliptic estimate and the rescaled Klainerman-Sobolev
estimate on Nτ , this implies

∣∣∣∂̄ϕ∣∣∣ ≲ r−3/2 ∥∂ϕ∥ ≲ r−1−δ.
• Bad derivatives. Using the elliptic estimate over a

u ∼ U, r ∼ R estimate gives |∂ϕ| ≲ r−1u−1/2 ≲ r−1/2−δ since
we lose a factor of r integrating over spacetime instead of just
a surface.

Similar but more complicated elliptic estimates for region t ≫ r .
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Pointwise estimates for bad derivatives

We still need to recover t−1 decay for ∂uϕ. Although the estimates
above only yield a decay rate of t−1/2+δ, the key thing to note is
that ∂u satisfies a transport equation which allows us to improve
this decay a posteriori. In particular, we have that

∂v (r∂uϕ) = r /∆ϕ+ ∂vϕ+ rN (∂ϕ, ∂ϕ) = O(r−1−δ)

which is integrable.
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Tools for the quasilinear problem



Tools for the quasilinear problem

We move now to the realm of quasilinear equations.

Model equation

−(1 + ϕ)∂2
t ϕ+ ∆ϕ = 0.

(Corresponds to g = diag(−1/(1 + ϕ), 1, 1, 1)).
New issues: derivative loss, additional term ϕ∂2

t ϕ.
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Quasilinear equations

First attempt: just put the quasilinear term ϕ∂2
t ϕ into error.

Ignoring loss of derivatives, we have∥∥∥ϕ∂2
t ϕ
∥∥∥

L1L2
≲ ∥ϕ∥L1L∞

∥∥∥∂2
t ϕ
∥∥∥

L∞L2
or ∥ϕ∥L∞L2

∥∥∥∂2
t ϕ
∥∥∥

L1L∞

but we only have |ϕ| ≲ v−δ, and
∥∥∂2

t ϕ
∥∥

L2 is at best bounded.
Similarly, the best pointwise decay for ∂2

t ϕ we can get is t−1, and
ϕ isn’t bounded in energy.

Need derivatives on both terms in order to gain decay.
Solution: Treat this as a main term and construct specialized
vector fields Γ using the metric g that commute better with the
equation.
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Global existence

Theorem (L., in progress)

Let d = 3,N ≥ 20, and δ > 0. There exists ε0 > 0 such that if the
initial data satisfies the target decay condition with ε < ε0 for all
|α| ≤ N, then the solution to the model equation exists globally in
time (with similar decay rates to the semilinear case).

Theorem (L., in progress)

Let d = 3,N ≥ 20, and δ > 0. There exists ε0 > 0 such that if
“initial data” to the Einstein vacuum equations satisfies the target
decay condition with ε < ε0 for all |α| ≤ N, then the solution to
the EVE exists globally in time, is future geodesically complete,
and decays asymptotically back to the Minkowski solution.
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Null geometry adapted to g

How do we construct vector fields that “see” the geometry of g?
• Construct an analogue of Minkowski t − r by solving eikonal

equation ⟨∇u,∇u⟩ = 0 with initial data on appropriately
chosen hypersurface.

• Let µ−1 := ⟨∇u,∇r⟩ (inverse foliation density) and define
L := µ∇u so that L(r) = 1 (analogue of “good derivative” ∂v ;
note µ ≡ 1 in Minkowski).

• Use (u, r , θ) coordinates, where θ are angular coordinates
propagated by L.
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• The frame {L, ∂θ} spans the tangent space to constant u
hypersurfaces.

• Complete the frame with vector field T , chosen to satisfy
normalization/orthogonality conditions. (Analogue of
Minkowski ∂t).

• Define “scaling vector field” S := rL + uµT , and commute
with Γ := {S,T , r2 /∇}.

• In these coordinates,

□̃gϕ = −L(−L + 2T )ϕ+ /∆ϕ− tr/g χTϕ− tr/g κLϕ− ζ♯ϕ

which allows us to easily compute commutators.
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Geometric estimates

Additional geometric quantities that appear in the estimates:
1. Second fundamental forms χ, κ associated to constant u, r

“spheres.”
2. Torsion ζ associated to null hypersurfaces of constant u (0 on

Minkowski).
3. Gauss curvature K used for elliptic estimates.
4. Ricci curvature Ricµν appears when differentiating χ, κ

terms.
Variety of technical difficulties associated to losing derivatives, but
eventually can get estimates to close.
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Questions?
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Questions?
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Morawetz estimates

It is also useful to have estimates for bulk energy terms. We state
this estimate below.
Theorem (Morawetz)

sup
k∈N

∫
r∼2k

(
r−1ϕ2 + r |∂ϕ|2

)
r−2dx

≲ ∥∂ψ∥2
L2(Future) + ∥∂ψ∥2

L2(Past) +
∫

Bulk
|∂rψrF | .

Takeaway: integral over all of time but a compact set in space
scales like r1/2.
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Proof of Morawetz

We begin again with writing the wave equation as

−∂u∂vψ + /∆ψ = −∂2
t ψ + ∂2

r ψ + /∆ψ = rF

where ψ := rϕ. Let h(r) be a (bounded, smooth) function to be
determined later. Multiplying by h(r)∂rψ and commuting, we
deduce that

h(r)∂rψ(−∂2
t ψ + ∂2

r ψ + r−1 /̊∆ϕ) = h(r)∂rψrF (2)

(here we use the fact that /̊∆ = r2 /∆ and commuted the
multiplication of ϕ by r with the angular derivatives).
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We would like to write the left hand side as

−∂t (h(r)∂rψ∂tψ) + 1
2∂r

(
h(r)

[
(∂tψ)2 + (∂rψ)2

])
+ /̊div(h(r)∂rψr−1 /̊∇ϕ) + Error.

Denote the terms in (2) by A,B,C and the terms in the above
equation by I, II, III. We now calculate the error terms. First, we
have

A = I + h(r)∂t∂rψ∂tψ.

(Note all t derivatives of h vanish identically by construction).
Now we compute that

II = B + h(r)∂r∂tψ∂tψ + 1
2
(
h′(r)

[
(∂tψ)2 + (∂rψ)2

])
so

B = II − h(r)∂r∂tψ∂tψ − 1
2
(
h′(r)

[
(∂tψ)2 + (∂rψ)2

])
40



Finally,

III = C + h(r)
r
〈
/̊∇∂rψ, /̊∇ϕ

〉
(3)

= C + h(r)
〈
/̊∇∂rϕ, /̊∇ϕ

〉
+ h(r)

r
〈
/̊∇ϕ, /̊∇ϕ

〉
(4)

= C + 1
2

(
∂r

(
h(r)

∣∣∣ /̊∇ϕ∣∣∣2)− h′(r)
∣∣∣ /̊∇ϕ∣∣∣2)+ h(r)

r
〈
/̊∇ϕ, /̊∇ϕ

〉
(5)

Thus, the overall error term is equal to

−
[1

2
(
h′(r)

[
(∂tψ)2 + (∂rψ)2

])
+ 1

2

(
∂r

(
h(r)

∣∣∣ /̊∇ϕ∣∣∣2)
−h′(r)

∣∣∣ /̊∇ϕ∣∣∣2)+ h(r)
r

∣∣∣ /̊∇ϕ∣∣∣2]
(note that we used the equality ∂r∂t = ∂t∂r to cancel the first
error term).

41



Integrating by parts, we obtain the equality∫
Bulk

1
2
(
h′(r)

[
(∂tψ)2 + (∂rψ)2

])
+
(h(r)

r − h′(r)
2

) ∣∣∣ /̊∇ϕ∣∣∣2 (6)

= −
(∫

Future
h(r)∂rψ∂tψ −

∫
Past

h(r)∂rψ∂tψ +
∫

Bulk
h(r)∂rψrF

)
.

(7)

Now set h(r) = r
2k+r . Note that h(r) ≤ 1, and we have the

equality

h′(r) = 2k

(2k + r)2 =⇒ h(r)
r − h′(r)

2 = 2k + 2r
2(2k + r)2 .
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We obtain the estimate∫
Bulk

1
2

(
2k

(2k + r)2

[
(∂tψ)2 + (∂rψ)2

])
+
(

2k + 2r
2(2k + r)2

) ∣∣∣ /̊∇ϕ∣∣∣2
(8)

≤ −
(∫

Future
h(r)∂rψ∂tψ −

∫
Past

h(r)∂rψ∂tψ +
∫

Bulk
h(r)∂rψrF

)
.

(9)
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Hardy

We now quickly prove a functional estimate that will be used
above. Observe that for any α > 1 we have∫ r2

r1
r−αf 2dr = 1

α− 1

(∫ r2

r1
2(r−α+1)ff ′dr − r−α+1f 2 |r2

r1

)
Applying Young’s inequality gives∫ r2

r1
r−αf 2dr ≤ 1

2

∫ r2

r1
r−αf 2dr

+ 1
α− 1

((∫ r2

r1
(r−α+2)f ′2dr

)
− r−α+1f 2 |r2

r1

)
and hence∫ r2

r1
r−αf 2dr +

[
r−α+1f 2

]
(r2)

≲α

(∫ r2

r1
(r−α+2)f ′2dr

)
+
[
r−α+1f 2

]
(r1).
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Now note that when r ∼ 2k the coefficients in (8) control r−1.
Applying the inequality above with f =

∫
rϕ =

∫
ψ, α = 3, we

deduce that

sup
k∈N

∫
r∼2k

r−1ϕ2 ≲ sup
k∈N

∫
r∼2k

r−1 |∂ψ| ≤ sup
k

(8).

Using the fact that ∂ψ = ϕ+ r∂ϕ and the triangle inequality, we
have

sup
k∈N

∫
r∼2k

r−1ϕ2 + r |∂ϕ|2 ≲ sup
k

(8)

≤ ∥∂ψ∥2
L2(Future) + ∥∂ψ∥2

L2(Past) +
∫

Bulk
|∂rψrF | .
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Pointwise estimates towards timelike infinity

So far, we’ve only discussed how to do pointwise estimates in the
region u ≲ r . It remains to prove decay in the regime u ≫ r , or,
equivalently, t ≫ r . Since the weights attached to good derivatives
only grow as r → ∞, we will need to use the equation to exchange
good derivatives for derivatives with weights in t. To do so, in this
regime, we combine a variant of the spacetime elliptic estimate
from above with an elliptic estimate involving ∆ to improve u
decay in this region. The eventual goal is to show that

|∂ϕ(U,R)|2 ≲ U−3Rε
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We will need the following functional estimate together with the
obvious observation ∆ = □ + ∂2

t .

Theorem (Luk, Oh ’23)

For any γ ∈ (−3/2,−1/2), we have the functional estimate∑
|α|≤2

∥(⟨r⟩ ∂)αϕ∥L2,γ ≤ Cγ ∥∆ϕ∥L2,γ+2 . (10)

where
∥f ∥L2,γ = ∥f ∥L2(R3,r2γdx)
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For any fixed U,R, we have

|∂ϕ(U,R)|2 ≲ U−1R−ε
∫

u∼U

∥∥∥(u∂u)α(r∂r )βΩγ∂ϕ
∥∥∥2

L2,−3/2+ε/2

≲ U−1R−ε
∫

u∼U

∥∥∥Γ≤3∂ϕ
∥∥∥2

L2,−3/2+ε/2

≲ U−1R−ε
∫

u∼U

∥∥∥∆Γ≤3∂ϕ
∥∥∥2

L2,1/2+ε/2

≲ U−1R−ε
∫

u∼U

∥∥∥∂2
ttΓ≤3∂ϕ

∥∥∥2

L2,1/2+ε/2
+ better

Use Morawetz to conclude this is enough decay to close.

48



Geometric quantities that need to be controlled

Lemma
We have the equality

RicLL = L(· · · ) + LµLν□̃ggµν + ∂̄g∂g
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Proof sketch We recall that the Ricci tensor is given by

Ricµν = ∂αΓα
µν − ∂µΓα

να + Γα
αβΓβ

µν − Γα
µβΓβ

αν

and hence

RicLL = LµLν∂αΓα
µν − LνL(Γα

να) + Γα
αβΓβ

LL − Γα
LβΓβ

αL.

We first note that

Γα
αβ = gαα′(∂αgβα′ + ∂βgα′α − ∂α′gαβ) = gαα′(∂βgα′α)

since the first and third terms are antisymmetric with respect to
switching α and α′. We can thus expand the third term as

LµLνgαα′(∂βgα′α)gββ′(∂β′gµν)
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Now we expand the first term as

LµLν∂α(gαβ(∂µgνβ + ∂νgβµ − ∂βgµν))/2
=LµLν(∂αgαβ)(∂µgνβ + ∂νgβµ − ∂βgµν)/2

+ LµLνgαβ∂α(∂µgνβ + ∂νgβµ − ∂βgµν)/2
=Lν(∂αgαβ)(Lgνβ) + LµLνgαα′

∂αgα′β′gββ′(∂βgµν)/2
+ LνgαβL(∂αgνβ) − LµLνgαβ(∂2

αβgµν)/2
=Lν(∂αgαβ)(Lgνβ) + LµLνgαα′

∂αgα′β′gββ′(∂βgµν)/2
+ LνgαβL(∂αgνβ) − LµLν□̃ggµν/2

and the fourth term as

−(LµLνgαα′(∂µgβα′ + ∂βgµα′ − ∂α′gβµ)
gββ′(∂νgαβ′ + ∂αgβ′ν − ∂β′gνα))/4.
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All of the terms above involving a contraction of the form Lµ∂µ are
already admissible quadratic terms. Similarly, all the products of
the form gαα′

∂α(· · · )∂α′(· · · ) are admissible quadratic terms, as

gαα′ = −1
2LαLα′ − 1

2Lα′Lα + /gAB(XA)α(XB)α′

so there are no terms of the form L(· · · )L(· · · ) above. The primary
term lacking null structure is

−(LµLνgαα′gββ′(∂βgµα′)(∂αgβ′ν))/4

but this exactly cancels one of the terms above.
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Appendix: strong non-global existence

The goal of this appendix is to show that all global solutions to the
equation 

□u = (∂tu)2

u(t = 0) = u0

∂tu(t = 0) = u1

(11)

with ui smooth and compactly supported are trivial, implying that
all nontrivial solutions blowup in finite time. Following the
Keir/Luk notes, we will deduce this via a reduction to spherical
means and an ODE blowup type result. We begin with the
Darboux equation. For h ∈ C∞(Rn), define

Mh(x , r) := 1
|B(x , r)|

∫
B(x ,r)

h(y)dy =
∫
S1

h(x + rz)dz .
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We claim the following:

Lemma
With Mh defined as above, we have

∆xMh(x , r) =
(
∂2

r + n − 1
r ∂r

)
Mh(x , r).
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Proof.
By definition, we have

|B(0, 1)|
∫ R

0
rn−1Mh(x , r)dr =

∫
|y |≤R

h(x + y)dy .

Taking ∆x on both sides and integrating by parts, we deduce that

|B(0, 1)|
∫ R

0
rn−1∆xMh(x , r)dr =

∫
|y |≤R

∆xh(x + y)dy

=
∫

|y |≤R
∂ i∂ih(x + y)dy

=
∫

|y |=R

y i

R ∂ih(x + y)dy .
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Proof.
Changing variables to z = y/R, this is further equal to

Rn−1
∫
S1

z i∂ih(x + rz)dy = |B(0, 1)| Rn−1∂r Mh(x , r).

Now taking derivatives with respect to r , we deduce that

Rn−1∆xMh(x , r) = (n − 1)Rn−2∂r Mh(x , r) + Rn−1∂2
r Mh(x , r)

as desired.
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We will also need the following calculation, where all functions are
now living in Rn+1:

Lemma
If □u = F , then

MF (0, r) = −∂2
t Mu(0, r) +

(
∂2

r + n − 1
r ∂r

)
Mu(0, r).

where now MF implicitly also may depend on time.

Proof.
For any fixed r , we have

(−∂2
t + ∆x )Mu(x , r) = □xMu(x , r) = M□u(x , r)

so using the previous equation and plugging in x = 0 yields the
result.
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Finally, we will need the following explicit formula for solutions to
the wave equation in 1 + 1 dimensions.

Lemma
The solution to the equation □v = F with initial data
v(t = 0) = v0 and ∂tv(t = 0) = v1 is given by

v(t, r) = 1
2

[
v0(t − r) + v0(t + r) +

∫
|r−r ′|≤t

v1(r ′)dr ′

+
∫

T (t,r)
F (t ′, r ′)dt ′r ′

]

where T (t, r) := {(t ′, r ′) | t ′ ≤ t, |r − r ′| ≤ t − t ′} is the backward
light cone from (t, r).
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Now suppose we have a global C2 solution of (11), and take R to
be such that the initial data is supported inside of B(x ,R). Define
v(t, r) := Mu(0, r) and u := t − r . Note that
∂2

r (rv) = r(∂2
r + 2

r ∂r )v , so using 12, we know that rv satisfies the
1 + 1 dimensional wave equation

∂2
t (rv) − ∂2

r (rv) = rF =: rM(∂tu)2

In particular, using 13 and dividing by r , we have that

v(t0, r0) = 1
2r0

(
Ṽ +

∫
T (r0,t0)

rFdrdt
)

where Ṽ is a solution to □Ṽ = 0 with the correct data.
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For (t0, r0) ∈ Σ := {r + R < t < 2r}, the contribution from the
homogeneous solution vanishes, and hence

v(t0, r0) = 1
2r0

(∫ t0+r0

T (r0,t0)
rFdrdt

)
(12)

= 1
2r0

(∫
T (r0,t0)−T (0,u0)

rFdrdt
)

(13)

≥ 1
2r0

(∫
T ∗(r0,t0)

r(∂tv)2drdt
)

(14)

where the last inequality follows from Jensen’s inequality.
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By positivity, we can further restrict the area of integration on the
right hand side to the set

{u0 < r < r0,−R < u < u0}

to replace the right hand side by

1
2r0

∫ r0

u0
rdr

∫ r+u0

r−R
(∂tv)2dt.
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Now note that

|v(r , r + u0)| =
∣∣∣∣∫ r+u0

r−R
∂tv(r , t)dt

∣∣∣∣ ≤ (u0 + R)1/2
∣∣∣∣∫ (∂tv)2

∣∣∣∣1/2

so plugging this into the previous equation yields

v(t0, r0) ≥ 1
2r0

∫ r0

u0
rdr

∫ r+u0

r−R
(∂tv)2dt

≥ 1
2r0(u0 + R)

∫ r0

u0
rv(r , r + u0)dr

Now define
β(r0) :=

∫ r0

u0
rv(r , r + u0)2dr

and note

β′(r0) = r0v(r0, r + u0)2 ≥ 1
4(R + u0)r0

β2

by the equation above.
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Integrating this functional inequality implies that, if β(r0) ̸= 0, then

1
β (r0) ≥ 1

β (r0) − 1
β(r) ≥ 1

4
1

(R + u0)2 log r
r0

for all r , which is impossible. We conclude that β = 0 in Σ, hence
v = 0 in Σ. Now using 12, we deduce that v ≡ 0 on a full slice,
which concludes.
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