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1 Recitation 1: Preliminaries (08/31/21)

EXERCISE 1.1 Associativity

Show that, if ◦ is an associative operation, then any valid parenthesization of 𝑔1 ◦ 𝑔2 ◦ · · · ◦ 𝑔𝑛 is
equal to

𝑔1 ◦ (𝑔2 ◦ · · · (𝑔𝑛−1 ◦ 𝑔𝑛))).

Proof. We proceed by induction on 𝑛. The base case 𝑛 = 2 is clear.
Now fix 𝑛 ≥ 3 and assume that the statement holds for all integers < 𝑛. Consider an arbitrary
parenthesization of 𝑔1 ◦ · · · ◦ 𝑔𝑛 as above, and decompose it as

𝑒1 ◦ 𝑒2 := (𝑔1 ◦ · · · ◦ 𝑔𝑘)︸          ︷︷          ︸
parenthesized somehow

◦ (𝑔𝑘+1 ◦ · · · ◦ 𝑔𝑛)︸             ︷︷             ︸
parenthesized somehow

for 𝑘 < 𝑛. Then by hypothesis, we have

𝑒1 = 𝑔1 ◦ (𝑔2 ◦ · · · ◦ (𝑔𝑘−1 ◦ 𝑔𝑘)))
and hence

𝑒1 ◦ 𝑒2 = (𝑔1 ◦ (· · · ◦ (𝑔𝑘−1 ◦ 𝑔𝑘))) ◦ 𝑒2 = 𝑔1 ◦ (· · · ◦ (𝑔𝑘−1 ◦ 𝑔𝑘)) ◦ 𝑒2)
by associativity. Applying the hypothesis again, we get the desired conclusion.

As just a quick reminder, some definitions discussed in class:
Definition 1. (𝐺, ·) is a semigroup if · : 𝐺 × 𝐺 → 𝐺 is an associative operation.
Definition 2. (𝐺, ·) is a monoid if it’s a semigroup and there exists 𝑒 ∈ 𝐺 such that 𝑒 · 𝑔 = 𝑔 · 𝑒 = 𝑔
for all 𝑔 ∈ 𝐺.
Definition 3. (𝐺, ·) is a group if it’s a monoid and for all 𝑔 ∈ 𝐺, there exists ℎ ∈ 𝐺 such that
𝑔ℎ = ℎ𝑔 = 𝑒.

EXAMPLE 1.2 Semigroups, Monoids, and Groups

Classify the following.
1. ({0, 1, · · · , 𝑛 − 1},+).
2. ({1, · · · , 𝑛 − 1},×).
3. (R3×3 ,×) (i.e. the set of 3 × 3 matrices).

4. {𝑀 ∈ R3×3 | det(𝑀) = 1}.
5. {𝑀 ∈ Z3×3 | det(𝑀) = 1}.
6. (Strings, +).

3



2 Recitation 2: Permutation Groups (09/07/21)

Below, 𝑋 will be a fixed (possibly infinite) set and 𝜎 : 𝑋 → 𝑋 an arbitrary permutation.

Let ∼ be the binary relation on 𝑋 such that 𝑥 ∼ 𝑦 ⇐⇒ ∃𝑘 ∈ Z | 𝑦 = 𝜎𝑘(𝑥).

EXERCISE 2.1

Show that ∼ is an equivalence relation.

Let’s call the equivalence classes “cycles.”

EXERCISE 2.2

Show that for each 𝑥 ∈ 𝑋 that its cycle [𝑥] is either a finite loop or an infinite “line.”

Now let’s say that 𝑋 is finite, i.e. that up to relabeling, 𝑋 = {1, 2, ..., 𝑛}.
The result we’ve proved above gives us a much more compact way of specifying 𝜎: rather than
writing out something like this:

𝑥 0 1 2 3 4 5 6 7 8 9
𝜎(𝑥) 0 2 9 5 4 7 6 3 8 1

we can just write 𝜎 := (1, 2, 9)(3, 5, 7).

EXERCISE 2.3

Show any disjoint cycles commute.

EXERCISE 2.4

Show that the representation above is unique up to commuting cycles.

EXERCISE 2.5

Let 𝑋 = {1, · · · , 9}, 𝜎 := (1, 2, 9)(3, 5, 7), and 𝜏 := (1, 3, 2)(4, 9). Compute 𝜎𝜏.

This next exercise has some connections to the Orbit-Stabilizer theorem, which we’ll probably
be talking about next week:

EXERCISE 2.6

Let 𝑥 ∈ 𝑋. Show that 𝐺 := {𝑘 ∈ Z : 𝜎𝑘(𝑥) = 𝑥} is a subgroup of Z. By homework, this implies 𝐺 is
either trivial or 𝑛Z for 𝑛 ∈ N. What do these cases correspond to?
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EXERCISE 2.7

Suppose |𝑋 | < ∞, and 𝜎, 𝜏 ∈ 𝑆𝑋 . Show that 𝜎, 𝜏 are conjugate to each other iff they have the same
cycle decomposition.

Proof. =⇒ : I kinda messed this up in recitation so I’ll actually write up something that works
here. Suppose that 𝜎 = 𝜋𝜏𝜋−1, i.e. that 𝜋 witnesses conjugacy of the two. Then for any 𝑥 ∈ 𝑋,

[𝑥]𝜎 =
⋃
𝑘∈N

𝜎𝑘(𝑥) =
⋃
𝑘∈N

𝜋𝜏𝑘(𝜋−1𝑥) = 𝜋[𝜋−1𝑥]𝜏

where we write [𝑥]𝜎 , [𝑥]𝜏, to denote the cycle of 𝑥 according to the respective permutations.
Note then that applying 𝜋 to any subset of 𝑋 preserves it’s cardinality, and hence we can
identify any equivalence class according to 𝜏 with a corresponding equivalence class of 𝜋 that
has the same cardinality, so we’re done!
⇐= : Exercise!

5



3 Recitation 3: Group Actions (09/14/21)

As just a quick reminder, some definitions discussed in class:

Definition 4. A group action of the group 𝐺 on the set 𝑋 (denoted by 𝐺 ↷ 𝑋), is either (or
equivalently)

• A homomorphism 𝐺 → 𝑆𝑋 .

• A function · : 𝐺 × 𝑋 → 𝑋 such that

1. 𝑒 · 𝑥 = 𝑥 ∀𝑥 ∈ 𝑋
2. 𝑔1𝑔2 · 𝑥 = 𝑔1 · (𝑔2 · 𝑥)∀𝑔1 , 𝑔2 ∈ 𝐺, 𝑥 ∈ 𝑋

THEOREM 3.1

Suppose that 𝐺 is a group and 𝐻 ≤ 𝐺 with [𝐺 : 𝐻] = 𝑛. Then ∃𝑁 ≤ 𝐻 normal in 𝐺 with [𝐺 : 𝑁]
dividing 𝑛! Hint: consider the action 𝐺↷ 𝐺/𝐻 by left multiplication.

The next several exercises will build up to the following result.

THEOREM 3.2

Suppose 𝐺 is a group such that |𝐺 | = 𝑝2. Then either 𝐺 � Z𝑝 × Z𝑝 or 𝐺 � Z𝑝2 .

Now we’ll show some quick auxiliary results needed for the next result.

Definition 5. The center 𝑍(𝐺) of a group 𝐺 is the set

𝑍(𝐺) := {𝑔 ∈ 𝐺 | 𝑔ℎ = ℎ𝑔 ∀ℎ ∈ 𝐺}.

EXERCISE 3.3

Show that 𝑍(𝐺) is a normal subgroup.

EXERCISE 3.4

Show if 𝐺/𝑍(𝐺) is cyclic, than it’s trivial.

EXERCISE 3.5

Show that if 𝐺 is a nontrivial 𝑝-group, then 𝑍(𝐺) ≠ {𝑒}.
EXERCISE 3.6

Use the previous 3 results to prove the theorem.

Recall for any two groups 𝐺, 𝐻, we can equip their Cartesian product 𝐺 × 𝐻 with the group
structure of their direct product (i.e. the coordinate-wise product).
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EXERCISE 3.7

Show that the direct product 𝐺 × 𝐻:

1. has subgroups isomorphic to 𝐺 and 𝐻.

2. has quotients isomorphic to 𝐺 and 𝐻.

Proposition 1. The 5 subgroups of order 8 are:

1. Z8.

2. Z4 × Z2.

3. Z2 × Z2 × Z2.

4. 𝐷8.

5. The quaternions.

Back to group action stuff:

EXERCISE 3.8

Show that if 𝐻 ≤ 𝐺, then 𝑔𝐻𝑔−1 ≤ 𝐺 for all 𝑔 ∈ 𝐺, and hence that we have a natural action
𝐺↷ {𝐻 | 𝐻 ≤ 𝐺}.

Recall the following:

Definition 6. The sign sgn(𝜎) of a permutation 𝜎 is (−1)𝑇(𝜎), where 𝑇(𝜎) is the number of 2-cycles
in any valid decomposition of 𝜎 into two-cycles.

Definition 7. The alternating group 𝐴𝑛 is the set

𝐴𝑛 := {𝜎 ∈ 𝑆𝑛 | sgn(𝜎) = 1}

EXERCISE 3.9

Show that:

1. 𝜎 ↦→ (1 + sgn(𝜎))/2 is a homomorphism from 𝑆𝑋 to Z2, and hence that 𝐴𝑛 ≤ 𝑆𝑛 .

2. 3-Cycles are always even.

3. Whenever 𝑛 > 4 any two 3-cycles are conjugate in 𝐴𝑛 .
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4 Recitation 4: Sylow’s Theorems and Friends (09/21/21)

Today we’ll be reviewing Sylow’s theorems with some applications. A quick reminder of what
those are:

Definition 8. 𝐻 ≤ 𝐺 is a Sylow 𝑝-subgroup if it’s a maximal 𝑝-subgroup.

THEOREM 4.1 (Sylow’s theorems)

1. Sylow 𝑝-subgroups exist; that is, for all groups 𝐺, with |𝐺 | = 𝑝𝑘𝑚, ∃𝐻 ≤ 𝐺 with |𝐻 | = 𝑝𝑘 .

2. Any two Sylow 𝑝-subgroups are conjugate to each other.

3. The number of Sylow 𝑝-groups 𝑛𝑝(𝐺) satisfies:
• 𝑛𝑝(𝐺) = [𝐺 : 𝑁𝐺(𝐻)] (in particular, 𝑛𝑝(𝐺) divides 𝑚).
• 𝑛𝑝(𝐺) ≡ 1 (mod 𝑝).

Now we’ll show some auxiliary results that will be useful in showing simplicity of 𝐴5.

EXERCISE 4.2

Any group with order 15 is cyclic.

EXERCISE 4.3

Any group with order 30 has a subgroup of order 15.

The counting type argument used above is pretty cool, and will be useful in the next result, but
make sure that you’re careful when using it! In particular, we’re exploiting cyclicity to conclude
that 𝐻 ∩ 𝐾 = {𝑒} for any 𝐻, 𝐾 both 𝑝-groups, but this doesn’t necessarily work when |𝐻 |, |𝐾 | are
higher powers of 𝑝.

EXERCISE 4.4

Any group with order 60 and 𝑛5(𝐺) > 1 is simple. Hint: first show that 5 ∤ |𝐻 | for any proper
𝐻 ⊴ 𝐺, then do some quotient trickery.

COROLLARY 4.5

𝐴5 is simple. Hint: consider ⟨(1, 2, 3, 4, 5)⟩ and ⟨(1, 3, 2, 4, 5)⟩ .
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THEOREM 4.6

𝐴𝑛 is simple.

Proof. We didn’t actually get to this in recitation, so see section 4.6 in Dummit and Foote.

COROLLARY 4.7

𝐴𝑛 is generated by 3-cycles. Hint: Use the results from last week to show that the group generated
by 3-cycles is normal in 𝐴𝑛 .
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5 Recitation 5: Nilpotence and Solvability (09/28/21)

Recall the following definitions from class:

Definition 9. Given a group 𝐺, the commutator [𝑔, ℎ] of any two elements 𝑔, ℎ ∈ 𝐺 is defined via

[𝑔, ℎ] := 𝑔−1ℎ−1𝑔ℎ

and is extended to sets 𝐴, 𝐵 ⊆ 𝐺 via

[𝐴, 𝐵] := ⟨{[𝑎, 𝑏] | 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵}⟩.
Definition 10. The derived series of a group 𝐺 is the sequence of subgroups {𝐺(𝑖)}𝑖∈N defined
recursively via 𝐺(0) = 𝐺, 𝐺(𝑖+1) = [𝐺𝑖 , 𝐺𝑖]. The lower central series of a group 𝐺 is the sequence of
subgroups {𝐺𝑖}𝑖∈N defined recursively via 𝐺0 = 𝐺, 𝐺𝑖+1 = [𝐺, 𝐺𝑖].
Definition 11. A group is solvable if 𝐺(𝑖) = {𝑒} for some 𝑖 ∈ N. The smallest such 𝑖 for which this
happens is the solvable length of the group. A group is nilpotent if 𝐺𝑖 = {𝑒} for some 𝑖 ∈ N. The
smallest such 𝑖 for which this happens is the nilpotency class of the group.

EXERCISE 5.1

Recall that 𝐷2𝑛 is the dihedral group on 𝑛 elements. Show that 𝐷2𝑛 is generated by the elements
𝑟 := 𝑥 ↦→ 𝑥 + 1 (mod 𝑛), 𝑠 := 𝑥 ↦→ −𝑥 (mod 𝑛) and further that we have the identities:

• 𝑠2 = 𝑟.

• 𝑠𝑟 = 𝑟−1𝑠.

• 𝑠𝑟 𝑘 = 𝑟−𝑘𝑠.

EXERCISE 5.2

Show that 𝐷2𝑛 is always solvable, and that it’s nilpotent iff 𝑛 = 2𝑘 for 𝑘 ∈ N.
EXERCISE 5.3

Let 𝐷2N be the automorphism group of the bi-infinite graph on Z; that is, the graph with edges
between 𝑘 and 𝑘 + 1 for all 𝑘 ∈ 𝑍. Show that this group is generated by 𝑟, 𝑠 as above and that the
same identities hold. Classify the nilpotence and solvability of this group.

Definition 12. Recall that given two groups 𝐺, 𝐻 where 𝐺↷ 𝐻 by automorphisms, we can define
the semidirect product 𝐻 ⋊ 𝐺 on 𝐻 × 𝐺 via

(𝑔0 , ℎ0)(𝑔1 , ℎ1) = (ℎ0(𝑔0 · ℎ1), 𝑔0𝑔1)
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EXERCISE 5.4

Suppose that 𝐴 ∈ Z2×2 with determinant ±1. Show that x ↦→ 𝐴x is an automorphism on (Z2 ,+).
Conclude that this naturally induces an action Z ↷ Z2 via 𝑛 · x = 𝐴𝑛x.

EXERCISE 5.5

Show that the semi-direct product above is always solvable. Show also that when 𝐴 =
(
1 1
0 1

)
this

group is nilpotent but when 𝐴 =
(
2 3
1 2

)
it’s not.
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6 Recitation 6: Midterm Review (10/05/21)

Not much to say here :)
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7 Recitation 7: Rings and Category Stuff (10/12/21)

As per usual, let’s start by recalling some definitions from class.

Definition 13. A ring is a structure (𝑅,+,×)where +,× are binary operations on 𝑅 such that (𝑅,+)
is an abelian group, (𝑅,×) is a semigroup, and for all 𝑎, 𝑏, 𝑐 ∈ 𝑅 :

𝑎 × (𝑏 + 𝑐) = 𝑎 × 𝑏 + 𝑎 × 𝑐 and (𝑎 + 𝑏) × 𝑐 = 𝑎 × 𝑐 + 𝑏 × 𝑐
Definition 14. A ring homomorphism between rings 𝑅, 𝑆 is a function 𝜑 : 𝑅 → 𝑆 such that
𝜑(𝑟 + 𝑠) = 𝜑(𝑟)+𝜑(𝑠) and 𝜑(𝑟𝑠) = 𝜑(𝑟)𝜑(𝑠) for all 𝑟, 𝑠 ∈ 𝑅. In the case 𝑅, 𝑆 have 1, it’s called unital
if 𝜑(1𝑅) = 1𝑆.

EXERCISE 7.1

Suppose 𝑅 is a ring with 1. Show that there exists a unique unital ring hom 𝜑 : Z→ 𝑅.

Recall also that given any commutative ring with 1 𝑅, we can form the polynomial ring 𝑅[𝑥] by
“adding in 𝑥” andhaving it commutewith everything. (Technically the assumptions of commutativity
and the existence of a unit aren’t necessary, but they make things slightly nicer so for the purposes
of this handout we’ll assume it).

EXERCISE 7.2

Show that 𝜄 : 𝑅 → 𝑅[𝑥] via 𝜄(𝑟) = 𝑟 is an injective ring homomorphism.

EXERCISE 7.3

Let 𝑅, 𝑆 be commutative rings with 1, 𝑓 : 𝑅 → 𝑆 be a homomorphism, and 𝑠 ∈ 𝑆. Show that there
exists a unique ring hom 𝑔 : 𝑅[𝑥] → 𝑆 such that 𝑔 ◦ 𝜄 = 𝑓 and 𝑔(𝑥) = 𝑠. (e.g. that the following
diagram commutes).

𝑅 𝑆

𝑅[𝑥]
𝜄

𝑓

𝑔

Remark. This is the universal property of polynomial rings, and can actually be used as a defining
property for 𝑅[𝑥]. What’s really going on in our construction is the following.

𝑅 𝑆

𝑅[𝑥] 𝑆[𝑥]
𝜄

𝑓

𝑓

ev(𝑠)
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Definition 15. Suppose 𝑅0 , 𝑅1 are algebraic structures. We call 𝐷 a direct product of 𝑅0 , 𝑅1 if 𝐷 is
also a structure (of the same type) and there exists 𝜋𝑖 : 𝐷 → 𝑅𝑖 homomorphisms such that for any
other structure 𝐺 and homomorphisms 𝑓𝑖 : 𝐺 → 𝑅𝑖 , there exists a unique 𝑓 : 𝐺 → 𝐷 such that the
following diagram commutes.

𝑅0

𝐺 𝐷

𝑅1
𝑓1

𝑓0

𝑓

𝜋0

𝜋1

EXERCISE 7.4 The direct product is a direct product

Show that 𝑅0 ⊗ 𝑅1 as defined in class is a direct product.

EXERCISE 7.5

Show that the direct product is unique up to isomorphism.

Proof. Let 𝐷, 𝐷′ be any two direct products with associated homomorphisms 𝜋𝑖 ,𝜋′
𝑖 . Take a

moment to reflect on the following diagram:

𝑅0

𝐷 𝐷′ 𝐷

𝑅1𝜋1

𝜋0

𝑓

𝜋′
1

𝜋′
0

𝑔

𝜋0

𝜋1

where 𝑓 , 𝑔 are the (unique!) homomorphisms guaranteed by the universal property. By the
universal property of𝐷 on itself, we see thatwemust have 𝑓 ◦𝑔 = Id𝐷 , and hence by symmetric
logic, 𝑔 ◦ 𝑓 = Id𝐷′ =⇒ 𝑓 is an isomorphism.

Remark. The same construction above generalizes to direct products of arbitrarily many algebraic
structures, though the exact numerology gets a bit more subtle when you’re dealing with infinite
products.
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8 Recitation 8: Ideals and Zorn’s Lemma (10/19/21)

As per usual recall that:

Definition 16. An ideal 𝐼 of a ring 𝑅 is a subset 𝐼 ⊆ 𝑅 such that 𝐼 ≤ 𝑅 and 𝐼𝑅, 𝑅𝐼 ⊆ 𝐼. Given
arbitrary 𝐴 ⊆ 𝐼, we write (𝐴) to denote the ideal generated by 𝐴; that is:

(𝐴) := ∩{𝐼 ⊆ 𝑅 | 𝐴 ⊆ 𝐼 , 𝐼 is an ideal}.
When 𝐴 = {𝑎}, we may occasionally drop the parentheses and just write (𝑎) to mean ({𝑎}). In the
case above, when an ideal is generated by a single element, we call the ideal principal.

Definition 17. A commutative ring 𝐹 with a 1 is a field if the zero ideal is maximal; that is, 𝐼 ⊋
(0) =⇒ 𝐼 = 𝑅 if 𝐼 is an ideal. This differs from the usual definition of “you can divide by stuff,”
but as we’ll show now these definitions are actually equivalent.

EXERCISE 8.1

Suppose that 𝐹 is a C1 ring. Show that 𝐹 is a field iff (𝐹 \ {0},×) is a group.

Now we’ll show some results on how the divisibility structure can be lifted to 𝐹[𝑥].

EXERCISE 8.2

Let 𝑓 ∈ 𝐹[𝑥] \ {0}, and 𝑔 ∈ 𝐹[𝑥] with degree at least that of 𝑓 . Then there exists 𝑔̂ ∈ 𝐹[𝑥] of strictly
lower degree such that 𝑔 − 𝑔̂ ∈ ( 𝑓 ).

THEOREM 8.3 Division in Polynomial Rings

Let 𝑓 ∈ 𝐹[𝑥] \ {0}, 𝑔 ∈ 𝐹[𝑥]. Show that there exists a unique 𝑟 ∈ 𝐹[𝑥] such that the degree of 𝑟 is
less than that of 𝑔 and 𝑔 − 𝑟 ∈ ( 𝑓 ).
Conclude that 𝐹[𝑥]/( 𝑓 ) = {𝑟 + ( 𝑓 ) | the degree of 𝑟 < the degree of f}.

EXERCISE 8.4

Show that every ideal in 𝐹[𝑥] is principle (i.e. that 𝐹[𝑥] is a PID).

For the rest of today’s recitation, we’ll be going through some useful examples on how Zorn’s
lemma can be used when reasoning about ideals/rings in general.

EXERCISE 8.5

Let 𝐼 , 𝑅 be such that 𝐼 ⊆ 𝑅 is a nonprincipal ideal. Show that 𝑅 has a maximal nonprincipal ideal.

Recall that a ring is Noetherian if every chain of ideals is finite (alternatively, that for any
sequence 𝐼0 ⊆ 𝐼1 ⊆ · · · , there exists 𝑁 such that 𝐼𝑛 = 𝐼𝑛+1 for all 𝑛 ≥ 𝑁).
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EXERCISE 8.6

Let 𝑅 be a non-Noetherian ring. Show that 𝑅 has amaximal ideal that is not generated by any finite
𝐴 ⊆ 𝑅.

EXERCISE 8.7

Let 𝑅 be a C1 ring. Show that⋃
𝑛∈N

{𝑟 ∈ 𝑅 | 𝑟𝑛 = 0} =
⋂

{𝐼 ⊆ 𝑅 | 𝐼 is a prime ideal}
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9 Recitation 9: Factorization and Stuff (10/26/21)

Today, all rings will be integral domains (i.e. commutative with 1 such that {0} is a prime ideal).

Definition 18. Let 𝐷 ⊆ 𝑅 be a multiplicatively closed subset of 𝑅 such that 1 ∈ 𝑅 and 0 ∉ 𝑅. We
define the localization of 𝐷 to be the ring

𝐷−1𝑅 := {[𝑎/𝑏]∼ | 𝑎 ∈ 𝑅, 𝑏 ∈ 𝐷}
where 𝑎/𝑏 ∼ 𝑐/𝑑 ⇐⇒ 𝑎𝑑 = 𝑏𝑐, and the ring operations are given by[ 𝑎

𝑏

]
∼
+
[ 𝑐
𝑑

]
∼
=
[
𝑎𝑑 + 𝑏𝑐
𝑏𝑑

]
∼

[ 𝑎
𝑏

]
∼
×
[ 𝑐
𝑑

]
∼
=
[ 𝑎𝑐
𝑏𝑑

]
∼

EXERCISE 9.1

Check that ∼ is an equivalence relation and that these operations are well-defined, making 𝐷−1𝑅
into a ring.

EXERCISE 9.2

Show that 𝜋 : 𝑅 → 𝐷−1𝑅 via 𝜋(𝑟) = [𝑟/1]∼ is an injective ring homomorphism, and hence we have
a canonical inclusion 𝑅 ⊆ 𝐷−1𝑅.

THEOREM 9.3 Universal Property of Localization

Suppose that 𝑓 : 𝑅 → 𝑆 is a unital homomorphism such that 𝑓 (𝑑) is a unit for all 𝑑 ∈ 𝐷. Then
there exists a unique 𝜓 : 𝐷−1𝑅 → 𝑆 such that 𝑓 = 𝜓 ◦ 𝜋.

Remark. As in the previous recitations, the above can actually be used as a defining property for
𝐷−1𝑅, and is equivalent to the following diagram commuting.

𝑅 𝑆

𝐷−1𝑅

𝜋

𝑓

𝜓

As before, it can easily be checked that uniquely defines the localization up to isomorphism.

Definition 19. Whenever𝐷 is the complement of a prime ideal, we can easily see that𝐷 satisfies the
criteria above, and hence can be localized. In particular, when 𝐷 := 𝑅 \ {0}, we define 𝐹𝑅 := 𝐷−1𝑅
to be 𝑅’s field of fractions.

Recall the following now:
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Definition 20. An integral domain 𝑅 is a unique factorization domain if, for all 𝑟 ≠ 0, (𝑟) ≠ 𝑅, the
ideal (𝑟) factors uniquely as

(𝑟) =
∏
𝑘

(𝑝𝑘)

with each 𝑝𝑘 irreducible.

Definition 21. Given a finite collection 𝑟1 , · · · 𝑟𝑛 ∈ 𝑅, we call 𝑑 ∈ 𝑅 a GCD for 𝑟1 , · · · , 𝑟𝑛 if 𝑑 | 𝑟𝑖 for
all 𝑖 ∈ [𝑛] and 𝑑′ | 𝑟𝑖 for all 𝑖 =⇒ (𝑑′) ⊇ (𝑑).

EXERCISE 9.4

Show that GCDs exist in a UFD (and hence also in a PID).

EXERCISE 9.5

Suppose that 𝑅 is an integral domain where every finitely generated ideal is principle. Show that
GCDs always exist.

Recall the following theorem from class:

THEOREM 9.6 (Gauss)

Suppose that 𝑓 ∈ 𝑅[𝑥] is irreducible. Then 𝑓 remains irreducible in 𝐹𝑅[𝑥].

Today, we’ll prove the converse:

THEOREM 9.7

Suppose 𝑓 ∈ 𝑅[𝑥] is irreducible as a polynomial in 𝐹𝑅[𝑥]. Then there exists 𝑟 ∈ 𝑅, 𝑔 ∈ 𝑅[𝑥] such
that 𝑓 = 𝑟𝑔 and 𝑔 is irreducible.
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10 Recitation 10: Polynomial Factorization and Gröbner Bases (11/02/21)

Definition 22. Suppose that 𝐹 is a field, and 𝐹[𝑥] is it’s polynomial ring. We define the formal
derivative ′ : 𝐹[𝑥] → 𝐹[𝑥] to be the linear operator extending 𝑥𝑛 ↦→ 𝑛𝑥𝑛−1 (recall we have a
canonical homomorphism Z→ 𝐹).

EXERCISE 10.1 Product Rule

Show that ( 𝑓 𝑔)′ = 𝑓 ′𝑔 + 𝑔′ 𝑓 .

EXERCISE 10.2

Let 𝑟 ∈ 𝑅. Show that 𝑓 (𝑟) = 𝑓 ′(𝑟) = 0 iff (𝑥 − 𝑟)2 divides 𝑓 .

THEOREM 10.3 Eisenstein

Suppose that 𝑝 is prime and that 𝑓 = 𝑥𝑛 +∑
𝑖<𝑛 𝑎𝑖𝑥

𝑖 ∈ Z[𝑥] where 𝑝 divides 𝑎𝑖 for all 𝑖. Then if 𝑝2

doesn’t divide 𝑎0, then 𝑓 is irreducible.

EXERCISE 10.4

𝑥4 + 1 ∈ Z[𝑥] is irreducible.

EXERCISE 10.5

Given 𝑝 prime, we define the 𝑛th cyclotomic polynomial to be

𝑥𝑝 − 1
𝑥 − 1

∈ Z[𝑥].

Show that this polynomial is irreducible.

Now we’ll turn to a proof of Hilbert’s basis theorem. We’ll begin by collecting some auxiliary
results:

EXERCISE 10.6

Let {𝑎𝑛} ⊆ R. Then there exists a subsequence {𝑎𝑛𝑘 } ⊆ {𝑎𝑛} that is either nondecreasing or
nonincreasing.
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EXERCISE 10.7

Let < be the partial order on N𝑛 where 𝑎 := (𝑎1 , · · · , 𝑎𝑛) < 𝑏 := (𝑏1 , · · · , 𝑏𝑛) iff 𝑎 ≠ 𝑏 and 𝑎𝑖 ≤ 𝑏𝑖 for
all 𝑖, and write 𝑎 ∼ 𝑏 iff 𝑎 ≮ 𝑏 and 𝑏 ≮ 𝑎.
Now let 𝑋 ⊆ N𝑛 be such that 𝑥 ∼ 𝑦 for all 𝑥, 𝑦 ∈ 𝑋. Then |𝑋 | < ∞.

Proof. Suppose not, i.e. that |𝑋 | = ∞, and let 𝜋𝑖 : N𝑛 → N be the natural projection onto the
𝑖th coordinate.
Since we have a natural injection from 𝑋 to

∏
𝑖∈[𝑛] 𝜋𝑖[𝑋], we see that theremust be 𝑖 with 𝜋𝑖[𝑋]

infinite. WLOG, let this 𝑖 = 1.
Then we can construct a sequence {𝑥𝑖}𝑖∈N ⊆ 𝑋 such that {𝑥𝑖 ,1} is strictly increasing.
Now suppose first that the set {𝑥𝑖, 𝑗}𝑖∈N, 𝑗>1 is bounded.
Then by pigeonhole, there must exist 𝑖 < 𝑖′ with 𝑥𝑖 , 𝑗 = 𝑥𝑖′, 𝑗 for all 𝑗 > 1. This in turn implies
𝑥𝑖 < 𝑥𝑖′, which violates our hypothesis.
Otherwise, this set is unbounded, hence infinite, so we can apply the same argument again to
find 𝑖0 with 𝜋𝑖0[{𝑥𝑖}] infinite. Again assumingWLOG 𝑖0 = 2, we can apply the same argument
to extract a further subsequence (not relabeled) {𝑥𝑖}𝑖∈N ⊆ 𝑋 such that {𝑥𝑖,1}, {𝑥𝑖,2} is strictly
increasing.
Iterating this argument, we eventually reach a contradiction, as it cannot be the case that there
exists a sequence in 𝑋 with all coordinates increasing.

EXERCISE 10.8

Let 𝑀 ⊆ 𝐹[𝑥] be a set of monic monomials, and set 𝑀0 := {𝑚 ∈ 𝑀 | 𝑚′ ∤ 𝑚 ∀𝑚′ ∈ 𝑀 \ {𝑚}}.
Show that (𝑀0) = (𝑀) and further that 𝑀0 is finite.

EXERCISE 10.9

Combine the above to deduce that Gröbner bases exist.

THEOREM 10.10 Buchberger’s Criterion

Let 𝐼 = (𝑔1 , . . . , 𝑔𝑚) be a nonzero ideal in 𝐹[𝑥1 , · · · 𝑥𝑛], and let 𝑆( 𝑓 , 𝑔) be “the polynomial obtained
by cancelling the leading terms of 𝑓 , 𝑔”. Then 𝐺 = {𝑔1 , . . . , 𝑔𝑚} is a Gröbner basis for 𝐼 if and only
if 𝑆

(
𝑔𝑖 , 𝑔𝑗

)
has remainder 0 after dividing by 𝑔1 , · · · , 𝑔𝑚 for all 1 ≤ 𝑖 < 𝑗 ≤ 𝑚.

Proof. See proposition 9.6.26 in Dummit and Foote.

EXERCISE 10.11

Compute a Gröbner basis for (𝑥3𝑦 − 𝑥𝑦2 + 1, 𝑥2𝑦2 − 𝑦3 − 1) ⊆ Q[𝑥, 𝑦] with the lexicographic order
extending 𝑥 > 𝑦.
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11 Recitation 11: Modules and Field Extensions (11/09/21)

Today, we’ll start off with some set theoretic black boxes.

THEOREM 11.1 Schröder-Bernstein

Suppose that 𝐴, 𝐵 are two sets such that there exist injective functions 𝑓 : 𝐴→ 𝐵, 𝑔 : 𝐵 → 𝐴. Then
there exists a bĳection from 𝐴 to 𝐵.

THEOREM 11.2

Suppose 𝐴 is an infinite set. Then there exists a bĳection between 𝐴 and 𝐴2.

Now recall the following result from previous recitations:

THEOREM 11.3

Suppose 𝑉 is an 𝐹 vector space. Then there exists 𝐵 ⊆ 𝑉 such that 𝐵 is a basis for 𝑉 .

Today, we’ll be proving the following.

THEOREM 11.4

Suppose 𝐵1 , 𝐵2 are two bases for the 𝐹 vector space 𝑉 . Then |𝐵1 | = |𝐵2 |.

THEOREM 11.5

Any two vector spaces of the same dimensional and over the same field are isomorphic.

THEOREM 11.6

The dimension of R as a Q-vector space is |R|.

EXERCISE 11.7

Show that the same holds for R2, and hence that R � R2 as vector spaces and additive groups.

EXERCISE 11.8

Suppose 𝐹 ⊆ 𝐾 is a field extension, and that [𝐾 : 𝐹] = 𝑛 < ∞. Then for all 𝛼 ∈ 𝐾, there exists a
polynomial 𝑝 ∈ 𝐹[𝑥] of degree at most 𝑛 such that 𝑝(𝛼) = 0 in 𝐾.
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12 Recitation 12: More Field Extensions (11/16/21)

We’ll start today by reviewing some results from class: throughout, 𝐹 ⊆ 𝐾 will be a field extension
with 𝛼 ∈ 𝐾.
Definition 23. Given 𝛼 ∈ 𝐾, if there exists 𝑓 ∈ 𝐹[𝑥] with 𝑓 (𝛼) = 0 (in 𝐾), we call 𝛼 algebraic over
𝐹. (There’s a couple equivalences to this that I’m too lazy to write). It can then be checked that

{ 𝑓 ∈ 𝐹[𝑥] | 𝑓 (𝛼) = 0} ⊆ 𝐹[𝑥]
is an ideal, and is hence principally generated by auniquemonic polynomial𝑚𝛼, called theminimal
polynomial of 𝛼.

As part of the equivalent definitions of being algebraic, we have the following result:

EXERCISE 12.1

𝐹[𝛼] = 𝐹(𝛼) ⇐⇒ 𝛼 is algebraic, where the left hand side is the ring generated by adding 𝛼, and
the right is the corresponding field generated by 𝛼.

EXERCISE 12.2

[𝐹(𝛼) : 𝐹] = deg𝑚𝛼.

We also have the following corollary of the homework:

THEOREM 12.3

Suppose {𝛼𝑖}𝑖∈[𝑛] ⊆ 𝐾, where [𝐹(𝛼𝑖) : 𝐹] are all relatively prime. Then [𝐹(𝛼1 , · · · , 𝛼𝑛) : 𝐹] =∏[𝐹(𝛼𝑖) : 𝐹].

Now we’ll do some computational examples.

EXERCISE 12.4

Show [Q(√2 + √
3) : Q] = 4.

EXERCISE 12.5

Compute the splitting fields of (𝑥𝑝 − 1)/(𝑥 − 1) and 𝑥𝑝 − 2 as polynomials in Q[𝑥] as a subset of C.
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13 Recitation 13: Automorphism Groups and Transcendence Bases (11/23/21)

It’s the penultimate recitation! Today should be relatively light; the transcendence base stuff is
more of a bonus topic since Thanksgiving is right around the corner.

We’ll start by reviewing some explicit examples of automorphism groups; recall that given a
field extension 𝐹 ⊆ 𝐾, we denote by Aut𝐹(𝐾) the set of automorphisms of 𝐾 that fix 𝐹. When 𝐹
isn’t specified explicitly, assume it to be the isomorphic copy of Z\𝑝Z or Q in 𝐾.
Also recall that given any irreducible 𝑝 ∈ 𝐹[𝑥], if 𝐾 is the splitting field of 𝑝, then Aut𝐹(𝐾) acts
transitively on the roots of 𝑝. Now we’ll just go through the following:

EXERCISE 13.1

Compute the following automorphism groups:

1. Aut(Q(√2)).
2. Aut(Q( 3√2)).
3. Aut(Q( 3√2, 𝜌)), where 𝜌 is a third root of unity.

4. Aut(R).

Now we’ll talk about transcendence base stuff!

Definition 24. Given fields 𝐹, 𝐾, a finite sequence 𝑠𝑖 ∈ 𝐾 is algebraically dependent over 𝐹 if there
is a nonzero multivariate polynomial 𝑓 ∈ 𝐹[𝑥𝑖] with 𝑓 (𝑠𝑖) = 0.
A set 𝐵 is called algebraically independent if no injective sequence from 𝐵 is algebraically dependent.
Any maximal such 𝐵 is called a transcendence basis.

First we’ll establish some basic properties of transcendence bases:

EXERCISE 13.2

Show that if 𝐵 is a transcendence base of 𝐾 over 𝐹, then 𝐾 is algebraic over 𝐹(𝐵).

EXERCISE 13.3

Show that this implies any base 𝐵 for C over Q has cardinality equal to |C|.

EXERCISE 13.4

Show that any 𝜎 ∈ 𝑆𝐵 extends to an element of Aut(C), and conclude that | Aut(C)| = 22𝜔 .
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14 Recitation 14: Cyclotomic Polynomials! (11/30/21)

It’s the last recitation! Today, we’ll be discussing cyclotomic polynomials. We begin with the
following definition.

Definition 25. For 𝑛 ∈ N, let 𝜇𝑛 ⊆ C be the set of 𝑛th roots of unity: that is,

𝜇𝑛 := {𝑒2𝜋𝑖𝑚/𝑛 | 𝑚 ∈ N}.

Today, we’ll be interested in analyzing Q(𝜇𝑛). Towards this end, we start with the following.

Definition 26. Say 𝜌 ∈ 𝜇𝑛 is primitive if it has order 𝑛. We define

Φ𝑛 :=
∏

𝜌 primitive ∈𝜇𝑛
(𝑥 − 𝜌) =

∏
gcd(𝑖,𝑛)=1,𝑖<𝑛

(𝑥 − 𝜌𝑖).

EXERCISE 14.1

Show that
𝑥𝑛 − 1 =

∏
𝑑 |𝑛

Φ𝑛(𝑥) =⇒ 𝑛 =
∑
𝑑 |𝑛

𝜑(𝑑).

This furnishes us with an explicit way to compute Φ𝑛 through just polynomial division.

EXERCISE 14.2

Compute Φ𝑛 for some some values of 𝑛.

Now we show some other interesting properties of Φ𝑛 .

EXERCISE 14.3

Show:

• Φ𝑛 ∈ Z[𝑥].
• Φ𝑛 is irreducible. Hint: supposeΦ𝑛 = 𝑓 𝑔 for 𝑓 , 𝑔monic and 𝑓 irreducible. Using separability

of 𝑥𝑛 − 1 in Z/𝑝Z, show that the roots of 𝑓 are precisely the roots of Φ𝑛 .

EXERCISE 14.4

Suppose 𝑝 ∤ 𝑛, 𝑚 | 𝑛 with 𝑚 < 𝑛. Then Φ𝑛 , 𝑥𝑚 − 1 have no common roots in Z/𝑝Z.
THEOREM 14.5

For any 𝑛 ∈ N, there exists infinitely many primes that are 1 mod 𝑛.
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15 Recitation 15: Galois Stuff (01/27/22)

Welcome back! :)
Hopefully this recitation wasn’t too scuffed, but who knows...

Recall the following definition:

THEOREM 15.1

Suppose that 𝐹 ⊆ 𝐾 is a field extension of finite degree. The following are equivalent:
(I) Every element of 𝐾 is a root of some separable polynomial in 𝐹[𝑥] that splits in 𝐾,
(II) 𝐾 is a splitting field of some separable polynomial in 𝐹[𝑥],
(III) |Aut𝐹(𝐾)| = [𝐾 : 𝐹];
(IV) 𝐹 is the fixed field of Aut𝐹(𝐾).
In any (and hence all) of these cases, we call the extension Galois

EXERCISE 15.2

Suppose that 𝑓 ∈ 𝐹[𝑥] is irreducible. Then 𝑓 is separable iff 𝑓 ′ ≠ 0.

COROLLARY 15.3

Any irreducible polynomial is separable in characteristic 0.

EXERCISE 15.4

Any irreducible polynomial is separable in a finite field.

EXERCISE 15.5

The polynomial 𝑥𝑝 − 𝑡 ∈ Z𝑝(𝑡)[𝑥] is irreducible but not separable.

EXERCISE 15.6

In characteristic ≠ 2, any extension of degree 2 is Galois.

Remark. Note that Galois extensions of Galois extensions are not always Galois: in particular, we
can check directly that the extension Q ⊆ Q[ 4√2] is not Galois.

Now we’ll take a quick foray into a bit of a bonus topic: symmetric functions!
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Definition 27. The elementary symmetric functions 𝑠1 , 𝑠2 , . . . , 𝑠𝑛 are

𝑠1 = 𝑥1 + 𝑥2 + · · · + 𝑥𝑛
𝑠2 = 𝑥1𝑥2 + 𝑥1𝑥3 + · · · + 𝑥2𝑥3 + 𝑥2𝑥4 + · · · + 𝑥𝑛−1𝑥𝑛
...

𝑠𝑛 = 𝑥1𝑥2 · · · 𝑥𝑛
Where 𝑥1 , 𝑥2 , . . . , 𝑥𝑛 are indeterminates.

Definition 28. The general polynomial of degree 𝑛 is the polynomial

(𝑥 − 𝑥1) (𝑥 − 𝑥2) · · · (𝑥 − 𝑥𝑛)
whose roots are given by 𝑥1 , 𝑥2 , . . . , 𝑥𝑛 .

THEOREM 15.7 Fundamental Theorem on Symmetric Functions

Any symmetric function in the variables 𝑥1 , · · · 𝑥𝑛 is a rational function in the elementary symmetric
functions 𝑥1 , · · · 𝑥𝑛 .
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16 Recitation 16: More Galois Stuff (02/03/22)

This writeup is going to be slightly shorter than usual just because we ended up recapping some
of the symmetric polynomial stuff I speedran through last time.
Let’s start by adding some more equivalences to the “big Galois theorem”.

THEOREM 16.1

Suppose that 𝐹 ⊆ 𝐿 is an arbitrary field extension. The following are equivalent:
(I) Every element of 𝐿 is a root of some polynomial in 𝐹[𝑥] with lotsa roots in 𝐿.
(II) Each element of 𝐿 is contained in an intermediate Galois extension of finite degree over 𝐹.
(III) 𝐿 is a splitting field of some set 𝐴 ⊆ 𝐹[𝑥] of polynomials with lotsa roots.
(IV) The extension is algebraic and 𝐹 is the fixed field of Aut𝐹(𝐿).
(V) For every 𝛼 ∈ 𝐿, it’s minimal polynomial 𝑚𝛼 has lotsa roots in 𝐿.
(VI) For every 𝛼 ∈ 𝐿, 𝑚𝛼 splits in 𝐿 and has non-zero formal deriative.

Proof. (𝐼) ⇐⇒ (𝑉) follows from the fact that𝑚𝛼 is a divisor of any polynomial with 𝛼 as a root
and that factors of separable polynomials are separable. (𝑉) ⇐⇒ (𝑉𝐼) is just an application
of exercise 15.2.

EXERCISE 16.2

Classify all subfields of the splitting field of 𝑥5 − 1 ∈ Q[𝑥].

(The rest of this section is mostly just made up of side remarks from finishing up the symmetric
polynomial stuff.)

EXERCISE 16.3

Verify that Aut𝐹(𝑠1 ,··· ,𝑠𝑛)(𝐹(𝑥1 , · · · , 𝑥𝑛)) � 𝑆𝑛 and hence (or otherwise) conclude that, for any finite
group 𝐺 and any characteristic, that there exists two fields 𝐹 ⊆ 𝐾 with Aut𝐹(𝐾) � 𝐺.

EXERCISE 16.4

Using our results on transcendence degree, show that we always have 𝐹(𝑥1 , · · · , 𝑥𝑛) ↩→ R, and
hence that 𝐹(𝑥1 , · · · , 𝑥𝑛) ↩→ C (here ↩→ means is “isomorphic to a subset of”)
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17 Recitation 17: Galois Groups of Polynomials (02/10/22)

Well, getting kicked out of rooms wasn’t very fun, but hopefully stuff was ok anyway. Returning
to the symmetric function stuff, today, we’ll start with the following:

EXERCISE 17.1

Show that any symmetric polynomial can be written (uniquely) as a polynomial in the elementary
symmetric functions.

Recall the following:

Definition 29. Given a sequence 𝛼1 , · · · , 𝛼𝑛 , we define it’s discriminant to be the quantity∏
𝑖< 𝑗

(𝛼𝑖 − 𝛼 𝑗)2

and the discriminant of a polynomial to be the discriminant of it’s roots.

EXERCISE 17.2

Show that the discriminant of a given polynomial in 𝐹[𝑥] is always in 𝐹.

EXERCISE 17.3

Using the technology that the discriminant grants us, classify all Galois groups of degree 2,3, and
4 polynomials.
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18 Recitation 18: Modules! (02/17/22)

Today, we’ll start with a useful identity from linear algebra that may prove to be useful on the
current assignment!

EXERCISE 18.1

Over any field 𝐹, show that the determinant of the matrix

©­­­­«
1 1 · · · 1
𝛼0 𝛼1 · · · 𝛼𝑛−1
...

...
. . .

...
𝛼𝑛−1

0 𝛼𝑛−1
1 · · · 𝛼𝑛−1

𝑛−1

ª®®®®¬
is precisely

∏
𝑖< 𝑗(𝛼𝑖−𝛼 𝑗), and therefore conclude that the rows of thismatrix are linearly independent

iff |{𝛼𝑖}| = 𝑛.

EXERCISE 18.2

Suppose 𝐹 ⊆ 𝐾 is a field extension, and let 𝜄 : 𝐹𝑚×𝑛 → 𝐾𝑚×𝑛 be the canonical inclusion. Show that
the rank (and hence also the nullity) of any matrix 𝑀 is equal to the rank of 𝜄(𝑀), e.g. that rank is
invariant under field extension.

Now we’ll move on to modules! Recall the following couple definitions:

Definition 30. A (left) module (𝑀,+) over a ring 𝑅 is an abelian group equipped with an 𝑅-action
· : 𝑅 ×𝑀 → 𝑀 satisfying the following:

1. 𝑟 · (𝑚 + 𝑛) = 𝑟 · 𝑚 + 𝑟 · 𝑛.
2. (𝑟 + 𝑠) · 𝑚 = 𝑟 · 𝑚 + 𝑠 · 𝑚.

3. 𝑟𝑠 · 𝑚 = 𝑟 · (𝑠 · 𝑚).
4. 1 · 𝑚 = 𝑚 (If 𝑅 has a 1).

Submodules are then defined in the usual way.

Proposition 2. The union of any chain of submodules remains a submodule, as does an arbitrary intersection.

Definition 31. Given an element 𝑚 ∈ 𝑀, we define it’s annihilator to be the set {𝑟 ∈ 𝑅 | 𝑟 ·𝑚 = 0}.
If this set is nontrivial, we say that 𝑚 is a torsion element (unfortunately, this is probably the last
time you’ll see this word used).

EXERCISE 18.3

Show that if 𝑅 is an integral domain, then the set of torsion elements is a submodule of 𝑀. Give
an example of a commutative ring for which this fails.
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EXERCISE 18.4

Let 𝐼 be an ideal. Then the set of all 𝑚 ∈ 𝑀 for which 𝐼 𝑘 · 𝑚 = 0 (for any 𝑘 possibly depending on
𝑚) is a submodule of 𝑅.
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19 Recitation 19: Module Homomorphisms and Isomorphism Stuff 02/24/21

As usual, we start with some definitions.

Definition 32. Given modules 𝑀, 𝑁 over a common ring 𝑅, we say 𝜙 : 𝑀 → 𝑁 is a module
homomorphism if it’s a group homomorphism that happens to respect the 𝑅-action. The set of all
such homomorphisms is denoted by Hom(𝑀, 𝑁).

EXERCISE 19.1

Show that the following hold.

1. Hom(𝑅, 𝑀) � 𝑀.

2. Hom(𝐴 × 𝐵, 𝑀) � Hom(𝐴, 𝑀) × Hom(𝐵, 𝑀).
3. If 𝐹 is a free module of rank 𝑚, then Hom(𝐹, 𝑀) � 𝑀 × · · · ×𝑀︸         ︷︷         ︸

𝑚 times

.

Definition 33. Recall also that given any index set 𝐼 and any collection {𝑀𝑖}𝑖∈𝐼 of modules, we can
form the direct product and direct sum

∏
𝑖∈𝐼 𝑀𝑖 , ⊕𝑖∈𝐼𝑀𝑖 in the manner defined previously.

EXERCISE 19.2

Show that we always have the submodule inclusion ⊕𝑖∈𝐼𝑀𝑖 ⊆ ∏
𝑖∈𝐼 𝑀𝑖 . In the special case that

𝐼 = N, 𝑀𝑖 = Z\𝑖Z, show that we do not have ⊕𝑖∈𝐼𝑀𝑖 �
∏

𝑖∈𝐼 𝑀𝑖

EXERCISE 19.3

Show that a direct product of free modules is not always free by considering
∏

𝑖∈N Z.
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20 Recitation 20: Canonical Matrix Representations (03/03/22)

Webegin by recalling the two following canonicalmatrix forms,which follow fromour classification
of finitely generated modules over a PID:
Definition 34. Given a polynomial 𝑓 =

∑
𝑎𝑖𝑥 𝑖 , we define it’s companion matrix to be

©­­­­­­«

0 0 . . . 0 −𝑎0
1 0 . . . 0 −𝑎1
0 1 . . . 0 −𝑎2
...

...
. . .

...
...

0 0 . . . 1 𝑎𝑑−1

ª®®®®®®¬
.

Definition 35 (Rational Canonical Form). Typing this out is too hard so I’ll do it sometime later.
Definition 36 (Jordan Normal Form). See above :<

Last week, we showed that several fundamental matrix properties are invariant under field
extension and transposition, including rank and nullity. Using these two canonical forms, we can
also add similarity to the list of such properties.

EXERCISE 20.1

Let 𝐹 ⊆ 𝐾 be a field extension, and 𝑀, 𝑁 ∈ 𝐹𝑛×𝑛 . Show that 𝑀 and 𝑁 are similar in 𝐹𝑛×𝑛 if and
only if they are similar in 𝐾𝑛×𝑛 . Using the special case where 𝐾 = 𝐹, conclude that every matrix is
similar to it’s transpose.

Proof sketch. The forwards direction is immediate in the first proposition. To show the backwards
direction, suppose that the two matrices are not similar over the field 𝐹, and consider the
rational canonical forms of 𝑀, 𝑁 in this field. Since they aren’t similar, then their invariant
factors must differ. However, since we can lift this factorization to 𝐾, and by uniqueness of
rational canonical form, we see that their rational canonical forms over 𝐾 are different as well,
showing that 𝑀, 𝑁 are not similar over 𝐾 either.
The second result follows by considering the Jordan canonical form in the algebraic closure of
𝐹 and then finding a way to conjugate Jordan blocks to their transpose.

EXERCISE 20.2

Suppose that 𝑇 ∈ GL(𝑉;𝑉) and satisfies that

𝑇−1 = 𝑇2 + 𝑇
where 𝑉 is a finite dimensional Q vector space. Show that the dimension of 𝑉 is a multiple of 3.

EXERCISE 20.3

Show that there are no “primitive 8th roots of unity” in Q3×3 by showing that𝑀8 = 𝐼 =⇒ 𝑀4 = 𝐼
for all 𝑀 ∈ Q3×3.
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Recall that a matrix 𝑀 is said to be nilpotent if 𝑀𝑘 = 0 for some 𝑘 ∈ N.

EXERCISE 20.4

Suppose 𝑀 ∈ 𝐹𝑛×𝑛 is nilpotent. Show that:

• 𝑀 is similar to amatrixwhere all the entries are 0 except for possibly 1s on the superdiagonal.

• 𝑀𝑛 = 0.

• The trace of 𝑀 is 0.
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21 Recitation 21: Representation Stuff (03/17/22)

21.1 Introduction

Ethan is away this week. We will be talking about Representation Theory, specifically irreducible
complex representations of finite abelian groups. A good resource for this is Fulton and Harris.

21.2 Definitions

Definition 37 (Representation). A representation 𝜌 is a group action on a vector space via linear
operators. Specifically, it is a vector space 𝑉 , a group 𝐺, and a homomorphism 𝜌 : 𝐺 → GL(𝑉).
Definition 38 (Subrepresentation). A subrepresentation of 𝜌 is the representation corresponding
to some subspace 𝑊 ⊆ 𝑉 s.t. 𝜌(𝑔)(𝑊) ⊆ 𝑊 ∀𝑔 ∈ 𝐺. i.e. it corresponds to a subspace that is
𝐺-invariant. A representation is irreducible if it has no proper subrepresentation.

THEOREM 21.1 Maschke’s Theorem

If 𝜌 is a representation of a finite group 𝐺 and vector space𝑉 over a field 𝐹 with char(𝐹) ∤ |𝐺 |, then
𝜌 decomposes as the direct sum of irreducible representations. In particular, if 𝐹 = C or 𝐹 is of
characteristic 0, then any representationdecomposes as the direct sumof irreducible representations.

Proof. Weshow the easier result that if𝑉 is a representationwith the aforementionedproperties
and𝑊 is a subrepresentation, then there is another subrepresentation𝑊 ′ s.t. 𝑉 =𝑊⊕𝑊 ′. First
let𝑈 be an arbitrary subspace of𝑉 complement to𝑊 , and let𝜋 : 𝑉 →𝑊 be the corresponding
projection operator that takes 𝜋(𝑤 + 𝑢) = 𝑤 for 𝑤 + 𝑢 = 𝑣 ∈ 𝑉 . We then define

𝑝(𝑣) = 1
|𝐺 |

∑
𝑔∈𝐺

𝜌𝑊 (𝑔) ◦ 𝜋 ◦ 𝜌𝑉 (𝑔−1)(𝑣) = 1
|𝐺 |

∑
𝑔∈𝐺

𝑔 ◦ 𝜋 ◦ 𝑔−1(𝑣)

and note that if 𝑣 ∈ ker𝑝 then for any ℎ ∈ 𝐺,

𝑝(ℎ𝑣) = 1
|𝐺 |

∑
𝑔∈𝐺

𝑔 ◦ 𝜋 ◦ 𝑔−1(ℎ𝑣)

=
1
|𝐺 | ℎ ◦

©­«
∑
𝑔∈𝐺

(ℎ−1 ◦ 𝑔) ◦ 𝜋 ◦ (𝑔−1 ◦ ℎ)(𝑣)ª®¬
= ℎ ◦ 𝑝(𝑣)
= 0

so that ker𝑝 is 𝐺-invariant and therefore a subrepresentation. Note char(𝐹) ∤ |𝐺 | makes 𝑝
well-defined. If 𝑣 ∈ 𝑊 , we get also get that 𝑝(𝑣) = 1

|𝐺 |
∑
𝑔∈𝐺 𝑔 ◦ 𝑔−1(𝑣) = 𝑣, since 𝜋 = id

on𝑊 . Moreover, the condition that 𝑊 is 𝐺-invariant makes it so that 𝑝(𝑣) ∈ 𝑊 ∀𝑣 ∈ 𝑉 . As
such, 𝑝(𝑣) = 𝑝(𝑝(𝑣)) =⇒ 𝑣 − 𝑝(𝑣) ∈ ker𝑝, so since 𝑝(𝑣) ∈ 𝑊 and 𝑣 is arbitrary this implies
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𝑉 =𝑊 ⊕ ker𝑝 decomposes as the direct sum of two subrepresentations.

Definition 39 (Homomorphism of Representations). A homomorphism of representations 𝜙 :
𝑉 → 𝑊 is a linear map 𝜙 : 𝑉 → 𝑊 that is compatible with the group actions of 𝐺 on 𝑉,𝑊 .
That is

(𝜙 ◦ 𝑔)(𝑣) = 𝜙(𝜌𝑉 (𝑔)(𝑣)) = 𝜌𝑊 (𝑔)(𝜙(𝑣)) = (𝑔 ◦ 𝜙)(𝑣).

THEOREM 21.2 Existence of Eigenvalues

If 𝑇 : 𝑉 → 𝑉 is a linear operator of some vector space 𝑉 over C, then 𝑇 has an eigenvalue.

Proof. Fundamental Theorem of Algebra.

THEOREM 21.3 Schur’s Lemma

If𝑉,𝑊 are irreducible representations of𝐺 and 𝜙 : 𝑉 →𝑊 is a homomorphismof representations,
then 𝜙 = 0 or is an isomorphism. In particular, if 𝑉 is an irreducible representation over 𝐾 = C
and 𝜙 : 𝑉 → 𝑉 is a homomorphism of representations, then 𝜙 is a multiple of the identity.

Proof. Note that the definition of a homomorphismmakes it so that ker𝜙 is a subrepresentation
of 𝑉 . Similarly im𝜙 is a subrepresentation of𝑊 . As such, either ker𝜙 = 0, in which case it is
injective, or ker𝜙 = 𝑉 , in which case 𝜙 = 0. If ker𝜙 = 0, either im𝜙 =𝑊 in which case we have
an isomorphism, or im𝜙 = 0 so that 𝜙 = 0. It follows that in any case, 𝜙 is an isomorphism or 0.

Now if 𝜙 : 𝑉 → 𝑉 is a homomorphism of some representation 𝑉 over C, we note that 𝜙 must
have some eigenvalue 𝜆. Then 𝜙 − 𝜆𝐼 is still a homomorphism, so by the above 𝜙 − 𝜆𝐼 = 0 or
is an isomorphism. But it can’t be an isomorphism since the eigenspace for 𝜆 is nonempty, so
𝜙 − 𝜆𝐼 = 0 =⇒ 𝜙 = 𝜆𝐼 as desired.
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21.3 Problems

EXERCISE 21.4

(DF 18.1.3) The degree 1 representations of 𝐺 are in bĳective correspondence with the degree 1
representations of the abelian group 𝐺/[𝐺, 𝐺], where [𝐺, 𝐺] is the commutator subgroup.

Proof. If 𝜌 : 𝐺 → GL(𝑉) is a representation, where 𝑉 is a degree 1 vector space over field 𝐹,
then for each 𝑔 ∈ 𝐺, 𝜌(𝑔) is described by scalar multiplication by some element of 𝐹. As such,
𝜌 can just be thought of as some homomorphism 𝜌 : 𝐺 → 𝐹×.

Then if 𝜌(𝑔), 𝜌(ℎ) correspond tomultiplication by 𝑐𝑔 , 𝑐ℎ ∈ 𝐹 constants, 𝜌(𝑔−1), 𝜌(ℎ−1) correspond
to multiplication by 𝑐−1

𝑔 𝑐
−1
ℎ so that 𝜌(𝑔ℎ𝑔−1ℎ−1) = 𝑐𝑔𝑐−1

𝑔 𝑐ℎ𝑐
−1
ℎ = 1 =⇒ 𝜌([𝐺, 𝐺]) = 1. As such

[𝐺, 𝐺] ≤ ker𝜌, and there is an induced representation on 𝐺/[𝐺, 𝐺].

Conversely, if 𝜌′ : 𝐺/[𝐺, 𝐺] → 𝐹× is a representation we can define 𝜌 : 𝐺 → 𝐹× via lifting
𝜌(𝑔) = 𝜌′(𝑔 (mod [𝐺, 𝐺])). It is easily seen that these mappings induce a bĳection.

EXERCISE 21.5

(DF 18.1.15, 16) Exhibit all 1-dimensional complex representations of a finite cyclic group. Exhibit
all 1-dimensional complex representations of a finite abelian group.

Proof. As in the previous problem, we can just think of 𝜌 : 𝐺 → GL(𝑉), where 𝑉 is a 1-
dimensional complex vector space, as some mapping 𝜌 : 𝐺 → C×.

Suppose 𝐺 = ⟨𝑔⟩ has order 𝑛. Then if 𝜌(𝑔) = 𝜆 for some 𝜆 ∈ C×, where 𝜌(𝑔𝑛) = 1 = 𝜆𝑛 =⇒ 𝜆
is an 𝑛-th root of unity, so there is a representation for each root of unity. It remains to show
that they are pairwise distinct. If 𝜌1 , 𝜌2 are representations corresponding to distinct roots of
unity 𝜆1 ,𝜆2, and 𝜙 : 𝑉 → 𝑉 is a homomorphism between them (scalar multiplication by some
constant 𝑘 ∈ C), then

𝜌1(𝑔) ◦ 𝜙 = 𝜙 ◦ 𝜌2(𝑔) =⇒ 𝑘𝜆1 = 𝑘𝜆2 =⇒ 𝜆1 = 𝜆2

so they are distinct. It follows that for cyclic groups of order 𝑛 there are 𝑛 distinct irreducible
1-dimensional complex representations.

Now we classify 1-dimensional complex representations of a finite abelian group. 𝐺 can be
decomposed as 𝐺 = 𝐺1 ×𝐺2 × . . .×𝐺𝑛 , where each of the 𝐺𝑖 is cyclic. Then if 𝜌 : 𝐺 → 𝐺𝐿1(C)
is a representation, then 𝜌 ↾𝐺𝑖 is as well, and corresponds to one of the previously described
representations since each 𝐺𝑖 is cyclic.

So if 𝐺𝑖 = ⟨𝑔𝑖⟩, 𝜌 is determined by whichever of the |𝐺𝑖 |th eigenvalues 𝜌((1, . . . , 𝑔𝑖 , . . . , 1))
scales C by. As such, there are a total of

∏𝑛
𝑖=1 |𝐺𝑖 | representations, all of which are pairwise

distinct (by the previous bit when 𝐺 was cyclic). It follows that for finite abelian groups 𝐺,
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there are |𝐺 | distinct irreducible 1-dimensional complex representations.

EXERCISE 21.6

(DF 18.1.17) If𝐺 is abelian, any irreducible complex representation 𝜌 of𝐺 has degree 1, and𝐺/ker𝜌
is cyclic.

Proof. Fix 𝑔 ∈ 𝐺, taking some eigenvector 𝑣 ∈ 𝑉 of 𝜌(𝑔)with eigenvalue 𝜆. Then for any ℎ ∈ 𝐻
we must have

𝜌(𝑔) ◦ 𝜌(ℎ)(𝑣) = 𝜌(ℎ) ◦ 𝜌(𝑔)(𝑣) = 𝜆𝜌(ℎ)(𝑣)
so that the eigenspace of 𝜆, 𝑉𝜆 is 𝐺-invariant. In particular, since 𝜌 is irreducible, 𝑉𝜆 = 𝑉 ,
so that 𝜌(𝑔) scales every element 𝑣 ∈ 𝑉 . Since 𝑔 was arbitrary, 𝜌(𝑔) is scalar for any 𝑔 ∈ 𝐺,
and if we fix some 𝑣 ∈ 𝑉 , span(𝑣) is now clearly 𝐺-invariant, so that span(𝑣) = 𝑉 and 𝑉 has
dimension 1.

Now recall by the previous exercises that degree 1 complex representations of a finite abelian
group can be classified via multiplication by roots of unity. Since 𝐺 is finite, we can find the
𝑔 s.t. 𝜌(𝑔) corresponds to multiplication by the root of unity with the smallest argument, and
we’re done by the First Isomorphism Theorem.

EXERCISE 21.7

(DF 18.1.18) If 𝜌 : 𝐺 → GL𝑛(C) is an irreducible matrix representation and 𝐴 is 𝑛 × 𝑛 commuting
with 𝜌(𝑔) ∀𝑔 ∈ 𝐺, then 𝐴 is scalar. Moreover if 𝜌 is faithful, then the center of 𝐺 is cyclic and 𝜌(𝑧)
is a scalar matrix for all 𝑧 ∈ 𝑍(𝐺).

Proof. Take some 𝑣 ∈ 𝑉 with eigenvalue 𝜆. Then we must have ∀𝑔 ∈ 𝐺,

𝜌(𝑔)(𝐴𝑣) = 𝐴𝜌(𝑔)(𝑣) =⇒ 𝐴𝜌(𝑔)(𝑣) = 𝜆𝜌(𝑔)(𝑣)
so that the eigenspace with eigenvalue 𝜆 is 𝐺-invariant. But since 𝜌 is irreducible, 𝑉 is the
eigenspace and 𝐴 is a scalar operator.

Now for any 𝑧 ∈ 𝑍(𝐺), 𝑣 ∈ 𝑉 we must have 𝜌(𝑔)(𝜌(𝑧)𝑣) = 𝜌(𝑧)(𝜌(𝑔)(𝑣)) so that 𝜌(𝑧) commutes
with all 𝜌(𝑔) and is therefore a scalar matrix. Now if𝑊 ⊆ 𝑉 has dimension 1, then clearly 𝜌
induces some representation 𝜌′ : 𝑍(𝐺) →𝑊 since 𝜌(𝑍(𝐺)) consists of scalar matrices. Clearly
𝜌′ is irreducible, so 𝑍(𝐺)/ker𝜌′ is cyclic, but since 𝜌 and therefore 𝜌′ are both faithful, this
implies 𝑍(𝐺) is cyclic.

EXERCISE 21.8

(DF 18.1.19) If 𝐺 is abelian, then any finite dimensional complex representation of 𝐺 is equivalent
to a representation into diagonal matrices.
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Proof. This is a one-liner by Maschke’s Theorem if you use the previous exercise.

EXERCISE 21.9

(DF 18.1.20) Prove that the number of degree 1 complex representations of a finite group 𝐺 is
[𝐺 : 𝐺′] where 𝐺′ is the commutator subgroup of 𝐺.

Proof. This is direct from problems 1 and 2.

38



22 Recitation 22: More Representation Stuff (03/24/21)

Given a complex vector space 𝑉 , we define it’s algebraic dual 𝑉∗ to be

𝑉∗ := Hom(𝑉,C)
i.e., the set of linear functions from 𝑉 to C. If we have an action 𝐺↷ 𝑉 , we can naturally furnish
𝑉∗ with it’s own representation via

𝑔 · 𝑓 := 𝑣 ↦→ 𝑓 (𝑔−1 · 𝑣).

EXERCISE 22.1

Assuming as per usual that 𝐺 is finite and 𝑉 is finite dimensional, show that the following hold:

• 𝜒𝑉∗ = 𝜒𝑉 .

• The dual representation is irreducible if and only if the “primal” representation is.

Proof sketch. For 𝑔 ∈ 𝐺, find a basis of 𝑇𝑔 eigenvectors {𝑒𝑖} and note that this forms a dual basis
{𝑒∗𝑖 }. Computing with respect to this basis gives youwhat youwant. The second point follows
from the fact that ⟨𝜒𝑉∗ , 𝜒𝑉∗⟩ = ⟨𝜒𝑉 , 𝜒𝑉⟩ = 1.

EXERCISE 22.2

Show that 𝑔 ↦→ det 𝑔 is a degree one representation.

EXERCISE 22.3

Suppose 𝑉 is a 𝐹𝐺 module. Prove that for each 𝑣 ∈ 𝑉 there is an 𝐹𝐺-submodule containing 𝑣 of
dimension < |𝐺 |.

EXERCISE 22.4

Show any irreducible 𝐹𝐺 module has dimension less than |𝐺 |.
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23 Recitation 23: A return to solvability (03/31/22)

Recall the following:

Definition 40. The derived series of a group 𝐺 is the sequence of subgroups {𝐺(𝑖)}𝑖∈N defined
recursively via 𝐺(0) = 𝐺, 𝐺(𝑖+1) = [𝐺𝑖 , 𝐺𝑖].
A group is solvable if 𝐺(𝑖) = {𝑒} for some 𝑖 ∈ N. The smallest such 𝑖 for which this happens is the
solvable length of the group.

Definition 41. A subnormal series of a group 𝐺 is a sequence of subgroups

{𝑒} = 𝐺0 ⊴ 𝐺1 ⊴ 𝐺2 · · ·𝐺𝑛 = 𝐺.

We showed previously in class that solvability is actually equivalent to the existence of a subnormal
series with each quotient abelian.

We’ll start nowby introducing a newproperty of subgroups that turns out to be strictly stronger
than normality.

Definition 42. A subgroup 𝐻 ≤ 𝐺 is said to be characteristic if 𝜑(𝐻) = 𝐻 for all automorphisms
𝜑 of 𝐺.

Remark. Normality corresponds to the same condition above but where we restrict 𝜑 to be a
conjugation automorphism, rather than just an arbitrary one.

EXERCISE 23.1

Show that Z2 ⊕ {0} is normal but not characteristic in Z2 ⊕ Z2.

EXERCISE 23.2

Show that:

1. Characteristicity is transitive, e.g. if 𝐻0 is characteristic in 𝐻1 and 𝐻1 is characteristic in 𝐺,
then 𝐻0 is characteristic in 𝐺.

2. If 𝐻 is characteristic in 𝐺 and 𝐺 is normal in 𝐾, then 𝐻 is normal in 𝐾.

EXERCISE 23.3

Show that every group in the derived series is characteristic (hint: by induction, it suffices to show
that the commutator subgroup is characteristic).

We did one more theorem that was pretty cool, but it required blackboxing a fairly important
part of the proof, so I won’t put it here. If you’re interested in looking it up again, it’s 19.2.2 in the
textbook.
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24 Recitation 24: Division and Matrix Rings (04/14/22)

Today all rings are nonzero with a 1, but not necessarily commutative.

Definition 43. Adivision ring𝐷 is a ring where (𝐷 \{0},×) is a group. (Basically, a not-necessarily
commutative field).

Today, we’ll be investigating various nice properties/examples of division rings. We’ll start
with the following:

EXERCISE 24.1

Show that any division ring is an irreducible module over itself.

We’ll also briefly recall this result from the homework:

EXERCISE 24.2 (Schur’s Lemma)

If L is an irreducible R-module, then Hom𝑅(𝐿, 𝐿) is a division ring.

We also have the following specialized version of the result above.

EXERCISE 24.3

Show that if 𝐷 is a division ring, then Hom𝐷(𝐷, 𝐷) is isomorphic to 𝐷𝑜𝑝 , the ring (𝐷,+, ∗), where
∗ is given by

𝑎 ∗ 𝑏 = 𝑏 × 𝑎
Conclude that this ring is also a division ring.

Recall briefly that a ring is simple if it has no nontrivial two-sided ideals.

EXERCISE 24.4

Show that if 𝐷 is a division ring, then 𝐷2×2 is a simple ring (as is, of course, 𝐷𝑛×𝑛 .)

EXERCISE 24.5

Classify all minimal left ideals of 𝐷𝑛×𝑛 . (Hint: look at each column, and consider multiplication
by matrices of the form in the previous proof.)

EXERCISE 24.6

Show that if 𝐿 is an irreducible 𝑅-module, and𝑀 = 𝐿0 ⊕ 𝐿1 is a direct sum of two copies of 𝐿, then
Hom𝑅(𝑀,𝑀) � Hom𝑅(𝐿, 𝐿)2×2. Conclude that this ring is also simple.

41



25 Recitation 25: Tensor Product Stuff! (04/21/22)

To be filled out at some point.
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