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Motivation and Setup

Background/Abstract

Partial differential equations (PDEs) are an integral tool for modeling the world around
us, as they accurately describe a huge array of natural phenomena, notably including the
development of and long term behaviour of fluids. Consequently, the study and charac‐
terization of PDEs has held a prominent place in mathematics for centuries. However,
despite their ubiquity, reasoning about solutions to these systems still remains incredibly
difficult, with the behaviour of relatively simple systems remaining completely open. Al‐
though a number of different analytical tools have been developed in order to better study
these systems, such as the theory of Sobolev spaces, an interesting new development has
come from V. Arnold, who recently developed a newmethod for analyzing PDEs related to
the Euler equations (which describe the behaviour of incompressible fluids). Using ideas
from the calculus of variations, Arnold established an important connection between these
equations and a set of geodesic flows, using variational techniques to characterize the lat‐
ter as solutions to the former.

Motivated by his results, in this project, we investigate PDEs that characterize minimizers
of energies related to surfactants, which are substances that adhere to fluids and have
the ability to change quantities like surface tension. With notable examples including
detergents, emulsifiers, and soap bubbles, the behavior of surfactants is of importance
in the cosmetic industry, ore extraction and in biology, where they prevent the collapse
of lungs during normal breathing. By careful choice of the different related energies, we
rederive several of the classically known PDEs related to surfactants, while also deriving
new systems that are of independent interest.

Setup and Notation
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Throughout, our domain of interest will be a fixed open and connected subset of Rn, which
will serve as an initial reference frame for our fluid. Denoting this set by Ω, we then set
Σ := ∂Ω to be it’s boundary and ν : Σ → Rn to be the associated outward pointing unit
normal.

Given any such domain, we can then define the function spaces Diff0(Ω),FDiff(Ω) ⊆
L2(Ω;Rn), which are set to be

Diff0(Ω) = {η : Ω → Ω | η ∈ FDiff(Ω)}
FDiff(Ω) = {η : Ω → Rn | η a volume/orientation preserving diffeomorphism}.

Viewing such functions as possible states for the fluid, we see then that Diff0 corresponds
to the space of states where the fluid remains fixed inside Ω (so in particular the boundary
remains the same), whereas FDiff is the space of states where the fluid can move around
arbitrarily in Rn, as depicted in the diagram above. In either case, we have that η provides
Lagrangian coordinates for the fluid.
With these spaces defined, we note also a result from differential geometry which tells us
that FDiff(Ω) and Diff0(Ω) are smooth manifolds, with their respective tangent spaces at any
point η satisfying

TηDiff0(Ω) = {u ◦ η ∈ L2(Ω;Rn) | div u = 0, u · ν = 0} (1)
TηFDiff(Ω) = {u ◦ η ∈ L2(Ω;Rn) | div u = 0} (2)

Technical Tools

Existence of a Perturbation

With these preliminaries established, we’ll now move onto various technical results, which
will facilitate the calculations and constructions used to derive our final PDEs. To begin,
consider the space X of all flows associated to Ω over the time interval [0, 1]; that is,

X := {η ∈ C1([0, 1];FDiff(Ω)) | η(0) = η0, η(1) = η1}

where η0, η1 are some fixed initial and terminal states of the fluid. Given any η ∈ X , we
can then view this function as a path between η0 and η1 along the manifold FDiff, with η(t)
encoding “where the fluid is at time t.” Since we’re then interested in characterizing shortest
paths along FDiff, a natural question to then ask would be what local changes can be made
to such a path η.
Fixing any such one‐parameter family of flows ζ(s) : (−ε, ε) → X with ζ(0) = η, an obvious
necessary condition is that ∂sζ(0)(t) is in the tangent space of FDiff at η(t). Using techniques
from the theory of ODE, we can show that this is also a sufficient condition; that is, given
an arbitrary velocity field v0, we can find ζ parametrizing perturbations of η such that the
derivative of ζ at η is equal to the desired velocity field.

Formally, the statement is as follows.

Lemma 1. Let v0 : [0, 1] → {v ∈ L2(Ω;Rn) | div (v ◦ η−1) = 0}, η0, η1 ∈ FDiff(Ω) be fixed.
Then there exists a perturbation ζ : (−ε, ε) → X such that:

ζ(0) = η, ζ(s) ∈ C∞, and ∂sζ(x, 0, t) := v(η(x, t), 0, t) = v0(η(x, t), t)

Using this lemma, since we now know that dζ
ds can be specified arbitrarily, we obtain useful

characterizations of local minima of the energies that we can use in conjunction with the
following results.

Decompositions of L2

Now with the previous result in hand, we consider different orthogonal decompositions of
L2, which will allow us to explicitly obtain formulae for functions that vanish when tested
against the divergence free velocity fields above.
The first result we state is the Leray decomposition, which allows us to introduce the pressure
term that will appear in our later PDEs.

Theorem 1 (Leray Decomposition). Let V be the space of smooth and compactly supported di‐
vergence free functions; that is,

V = {φ ∈ C∞
c (Ω;Rn) | div φ = 0} (3)

Let H be the closure of V in L2(Ω;Rn). Then H and its orthogonal complement in L2(Ω;Rn)
satisfy the following:

H = {u ∈ L2(Ω;Rn) | div u = 0, u · ν = 0} (4)

H⊥ = {∇p ∈ L2(Ω;Rn) | p ∈ H1(Ω)} (5)

We also have an analogous result for functions that are not necessarily smooth:

Theorem 2. Let
H ′ = {u ∈ L2(Ω;Rn) | div u = 0} (6)

Then H ′ is a closed subspace of L2(Ω;Rn) and the orthogonal complement of H ′ in L2(Ω;Rn) is

H ′⊥ = {∇p ∈ L2(Ω;Rn) | p ∈ H1(Ω), p = 0 on ∂Ω} (7)

Reynolds Transport Theorem on Hypersurfaces

The final result we will need is the Reynolds Transport Theorem, which is a result that allows
us to obtain explicit formulae for the derivatives of boundary terms in our energies, which
we will need for those energies involving surfactants.

Theorem 3. Let Σ be a hypersurface and β ∈ C1(Σ × [0, 1];Rn). Set Σ(t) = β(Σ, t). If f ∈
C1(Rn × [0, 1];Rn), then

d

dt

∫
Σ(t)

f =
∫

Σ(t)
∂tf + ∇f · u + fdivΣ(t)u (8)

where u(β(x, t), t) = ∂tβ(x, t) and the surface divergence is divΣ(t)u = tr((I − ν ⊗ ν)Du).

Main Results

Previous results: Arnold’s setup

We start with Arnold’s original derivation of the Euler equations, noting in particular the
relative simplicity of the associated energy.

Theorem 4 (Arnold). Let X0 be the space of flows of Ω with fixed domain, i.e.

X0 := {η ∈ C1([0, 1];Diff0(Ω)) | η(0) = η0, η(1) = η1}

where again η0, η1 are some fixed initial/terminal states. If they exist, minimizers of the energy
functional E : X → R+ defined via

E(η) =
∫ 1

0

∫
Ω

1
2
|∂tη|2 dxdt (9)

satisfy the incompressible Euler equations with fixed boundary and uniform constant density; that
is, 

∂tu + u · ∇u + ∇p = 0 on Ω
div u = 0 on Ω
u · ν = 0 on ∂Ω

(10)

where u is the Eulerian velocity defined via u(η(x, t), t) = ∂tη(x, t) and p is the pressure.

Proof Sketch. For any perturbation ζ as before, we know that we must have

∂sE(ζ) |s=0= 0

since ζ(0) = η is a minimizer. Now by considering arbitrary velocity fields as in the previous
result, building corresponding perturbations, and expanding this out, we find that ∂tu+u ·∇u
must vanish when tested against any smooth, compactly supported, and divergence free
function. Using the Leray decomposition, we see that this term must be exactly the negative
pressure gradient, which leads to the first equation. The second and third equations are then
a consequence of the fact that η must be volume preserving and has fixed image.

Result #1: Surface tension and potential

We now consider a significant complication of the Arnold functional, where we introduce a
globally defined potential term φ (which can represent forces such as gravity or electromag‐
netism), allow the Eulerian and densities ρ of the fluid to vary over space, add a term σ to
compensate for surface tension, and allow the fluid to move freely through space.

Theorem 5. Given a constant σ ∈ R+, ρ : Ω → R+ and φ ∈ C1(Rn), minimizers (if they exist) of
the energy E : X → R defined via

E(η) =
∫ 1

0

(∫
Ω

ρ

2
|∂tη|2 − φ(η) dx −

∫
∂Ω(t)

σdS

)
dt (11)

must satisfy the incompressible Euler equations with surface tension; that is,
ρ(∂tu + u · ∇u) + ∇p = −∇φ on Ω(t)
div u = 0 on Ω(t)
p = −σH on ∂Ω(t)

(12)

where Ω(t) := η(Ω, t), u is the Eulerian velocity defined via u(η(x, t), t) = ∂tη(x, t), ρ, ρ are
Lagrangian and Eulerian densities, and H = −div ν is the mean curvature of ∂Ω(t).

Proof Sketch. We proceed as in the previous result. By first only considering compactly sup‐
ported velocity fields, we can isolate the contribution of the terms defined on Ω to deduce
the first equation. Considering general velocity fields, combining the Reynolds transport
equation and the surface divergence theorem, and doing further computations then yields
the other equations.

Result #2 Penalizing surfactant boundary wiggling

Now we introduce a term to penalize the motion of surfactants that move alongside the
boundary. Here the motion of the surfactants is determined by the motion of the flow map.

Theorem 6. Given ρ : Ω → R+, ξ : R → R+, γ0 : ∂Ω → R+, φ ∈ C1(Rn), let E : X → R via

E(η) =
∫ 1

0

(∫
Ω

ρ

2
|∂tη|2 − φ(η) dx +

∫
∂Ω

γ0
2

|∂tη|2 dS −
∫

∂Ω(t)
ξ(γ) dS

)
dt (13)

with all relevant terms as defined above. Then minimizers (if they exist) of the energy functional
E must satisfy 

ρ(∂tu + u · ∇u) + ∇p = −∇φ on Ω(t)
div u = 0 on Ω(t)
γ(∂tu + u · ∇u) − pν = ∇Σ(t)σ + Hνσ on ∂Ω(t)
∂tγ + ∇γ · u + γdivΣ(t)u = 0 on ∂Ω(t)

(14)

where u is the Eulerian velocity, σ = ξ(γ) − ξ′(γ)γ is the surface tension, ρ, ρ are densities, and p
is the pressure term.

Result #3: Surfactants freely moving along boundary

Finally, we introduce another degree of freedom by allowing the surfactants to move along
the boundary independently of the mass in the interior, as parameterized by a function β.

Theorem 7. Let X be as above and

Y = {β ∈ C1([0, 1];Diff0(∂Ω)) | β(0, x) = x}

Given ρ : Ω → R+, ξ : R → R+, γ0 : ∂Ω → R+, φ ∈ C1(Rn), consider E : X × Y → R via

E(η, β) =
∫ 1

0

(∫
Ω

ρ

2
|∂tη|2 − φ(η) dx +

∫
∂Ω

γ0
2

|∂t(η ◦ β)|2 dS −
∫

∂Ω(t)
ξ(γ) dS

)
dt (15)

with all relevant terms as defined above.

Then minimizers (if they exist) of the energy functional E must satisfy
ρ(∂tu + u · ∇u) + ∇p = −∇φ on Ω(t)
div u = 0 on Ω(t)
γ(∂tus + us · ∇us) − pν = ∇Σ(t)σ + Hνσ on ∂Ω(t)
∂tγ + ∇γ · u + γdivΣ(t)u = 0 on ∂Ω(t)

(16)

where us is the Eulerian velocity of the surfactants (defined via us(η(β(x, t), t), t) =
∂t(η(β(x, t), t))), σ = ξ(γ) − ξ′(γ)γ is the surface tension, and u, ρ, ρ, and p are as before.

Note that while this result and the previous result appear to be very similar, the surfactant
velocity us is now generated not only by the motion of η but also by the motion of the
surfactants β, which complicates the corresponding terms.
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