
A Probabilistic Analysis of Enhanced
Dissipation

by
Ethan Lu

A thesis submitted in partial fulfillment of the requirements for the Master
of Science in Mathematical Sciences at Carnegie Mellon University.

April 26, 2022

Committee:
Gautam Iyer, Chair

Clinton Conley
Tomasz Tkocz



Abstract

In this thesis, we present several results concerning enhanced dissipation, a physical phenomenon
that manifests in a wide variety of contexts. In chapter 2, we review several results from
the theory of PDE that concern decay of solutions to the advection-diffusion equations. In
particular, we present an argument from [1, 2] that demonstrates how “mixing conditions”
on the advection term can lead to an exponential improvement to naive bounds on the
dissipation time obtained in the absence of advection. In chapter 3, we turn our attention to
a discrete-time analog of the model above, focusing instead on bounding the mixing rate of
Markov processes obtained by interleaving an exponentially mixing dynamical system with a
random walk. Motivated by the results of [3], we approach such systems using tools from the
symbolic dynamics, which have recently been shown to universally capture all properties of
exponentially mixing dynamical systems. In section 3.6, we prove our main result by showing
how coupling together with mild geometric conditions on such systems can be used in an
incredibly elegant way to prove tight mixing time bounds in a fairly broad set of examples.
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Chapter 1

Overview

1.1 Introduction
This thesis concerns itself with the phenomenon of enhanced dissipation, an effect that
commonly manifests itself in a variety of physical contexts, ranging from tumor growth and
bacterial movement to fluid flow and chemotaxis (through e.g., the Cahn-Hilliard and Keller-
Segel equations). The basic setup can be thought of as follows. Suppose you’re given a
container of incompressible fluid and a drop of dye and are tasked with coloring all of the
water as quickly as possible. While you could just drop in the dye and step away, perhaps
the more natural thing to do would be to put the dye in and then to stir the fluid, thereby
speeding up the process of convection. This simple observation captures exactly the idea of
enhanced dissipation, which has become a recent subject of study within the PDE community
(see [4] for a review). Although precise formulations of this phenomenon vary significantly
from problem to problem, perhaps one of the simplest models to consider is that of the
advection–diffusion equation, which reads

∂tθ + u · ∇θ − κ∆θ = 0 (1.1)

where θ is understood to represent the concentration of a dye, u is a (possibly time-dependent
and divergence free) velocity field advecting the fluid, and κ is the diffusivity of the dye.
Within this context, a standard measure of dissipation is to consider bounds on the variance
of such solutions (e.g., bounds on

∥∥θ − −
∫
θ
∥∥
L2). As we will see in section 2.2, with a simple

energy estimate, we can obtain the bound

‖θ(·, t)‖L2
0(Ω) ≤ e−λ1κt ‖θ(·, 0)‖L2

0(Ω)

for all mean 0 solutions to (1.1), where λ1 denotes the smallest non-zero eigenvalue of the
Laplacian. Although such a calculation already yields a useful insight into the nature of the
problem, the energy estimate above is inherently limited because it fails to consider advection.
Indeed, after integrating by parts, the effect of u cancels, meaning that this bound has no
dependence on the bulk motion of the fluid. The primary question to answer, then, is to see
how different properties of u can be parlayed into improved bounds on the exponent given
above, also known as the dissipation time of the system. Towards doing so, the primary
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6 CHAPTER 1. OVERVIEW

relation we will be interested in studying is that between the ergodicity of such a system and
its dissipation time.

In continuous time, recent results from [1, 2] have shown that the O(κ−1) bound on
the dissipation time above can be improved to O(ln κ)2 given an “exponential mixing”
assumption on the underlying flow u, the details of which are the focus of chapter 2. While
already a substantial improvement to the naive bounds discussed above, however, there still
remains the natural question of whether or not these bounds are optimal. Heuristically,
the answer is no: in addition to intuitive arguments suggesting an optimal bound of order
O(ln κ), several classes of exponentially mixing flows for which this bound holds have been
explicitly constructed, suggesting that it could hold in the general case (see [1]).

The focus of chapter 3, then, is to examine situations in which we can recover this tighter
bound through a slight modification to the underlying model. More precisely, our approach
in this chapter is to model solutions as Markov processes obtained by intertwining a mixing
dynamical system with a random walk. The upshot of this approach is that a different
set of tools from probability can be applied directly, rather than having to rely solely on
PDE methods. In particular, we will find that tools from the theory of mixing times prove
indispensable, allowing us a more diverse set of tools to tackle these problems. In doing so,
we will discover an unexpectedly deep connection to the theory of symbolic dynamics, which
will lead us to an entirely new approach for characterizing and studying the interactions
between advection and diffusion in this setting. As a result, we’ll then be able to prove our
main result in section 3.6, which parlays mild geometric conditions on the symbolic dynamics
perspective into a O(ln κ) bound on the associated mixing time.

1.2 Main Results
We now briefly state the two main results of this thesis. As already mentioned, our first
result is due to [1, 2], and provides a sufficient condition for an exponential improvement to
the dissipation time of advection-diffusion type systems.

Theorem 1 (Proved in Theorem 2.10). Suppose that u is a smooth, divergence free, and
exponentially mixing velocity field. Then for κ � 1, the dissipation time of the associated
advection-diffusion equations is bounded by

τd ≤ C |lnκ|2

for some C > 0.

Our second result is original, and leverages recently established connections between
the theory of exponentially mixing dynamical systems and symbolic dynamics to provide a
slightly tighter bound to the mixing time of Markov processes obtained by interleaving an
exponentially mixing dynamical system and a homogeneous noise kernel. We take care to
note that Theorem 2 below is not stated in the full generality of Theorem 3.24, and is instead
a consequence of this theorem together with Proposition 3.23; for the sake of clarity and it’s
particularly notable applications, we choose to only highlight this special case here.
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Theorem 2 (Proved in Proposition 3.23 and Theorem 3.24). Let M be a Riemannian
manifold and T : M → M be a exponentially mixing Bernoulli dynamical system. Suppose
further that Kκ is a homogeneous Markov transition kernel on M as in definition 3.22
and proposition 3.23. Then the mixing time of the Markov process associated to T ⋆ Kκ

satisfies the estimate
τmix ≤ C |lnκ| .

1.3 Layout of the Thesis
We conclude now with a brief overview of the layout of the rest of this document. As
mentioned above, in chapter 2, our main goal is to build towards the recent results of [1, 2],
which parlay an exponential mixing requirement on the advection term into a logarithmic
dissipation time of solutions to the advection-diffusion equation in continuous time. Towards
doing so, we begin in section 2.1 by establishing the basic notation and conventions used
throughout. With these out of the way, in section 2.2 we then show how diffusion alone
can already lead to mixing via the energy estimate mentioned above. After introducing an
additional advection term, we then frontload many of the analogous estimates needed for the
next section. The chapter then concludes with the proof of its main result in section 2.3.

Changing gears, in chapter 3, we then consider a slightly different model of advection-
diffusion in discrete time. In section 3.1, we begin with a brief review of various results in
the theory of Markov processes, which serve as the analogue of the process of diffusion in
this model. As in the previous case, even in the presence of diffusion alone, various tools
from probability are able to provide us with quantitative bounds on the mixing time of such
systems. After establishing these results, we then review various results from the theory of
dynamical systems in section 3.2, which serve as the analogue of advection, paying particular
attention to those concerning ergodicity. In section 3.3, we provide several prototypical
examples of the systems we are interested in studying, which will then motivate the results
of sections 3.4 and 3.5, where we establish the connection between exponentially mixing
dynamical systems and Bernoulli systems. We conclude in section 3.6 with our main result
of this chapter, which leverages mild geometric conditions on the symbolic dynamics to prove
a tighter bound on the mixing time of such systems.



Chapter 2

Dissipation Enhancement in
Continuous Time

2.1 Norms, Function Spaces, and Setup
As mentioned above, the focus of this chapter is to investigate how interactions between large-
scale bulk movement and small-scale diffusion can lead to quantitatively faster mixing rates
within the context of the advection-diffusion equation in continuous time, with a particular
interest paid to the speedup afforded by exponentially mixing velocity fields. The primary
result of this chapter is Theorem 2.10, with our proof mirroring that of [1, 2].

For the sake of presentation, for the remainder of this chapter, we assume that our
domain of interest Ω is given by the d-dimensional torus Td := (R/Z)d, though most of the
results presented here also hold in the more general case when Ω is given to be e.g. a smooth
Riemannian manifold. Throughout, we also fix a smooth incompressible (i.e. divergence free)
velocity field u : R× Ω → R and consider solutions θ : R≥s × Ω → R to the equations{

∂tθ + u · ∇θ − κ∆θ = 0 for t > s

θ(t = s) = θs
(2.1)

given s ∈ R, initial data θs ∈ L2
0(Ω), and a diffusivity parameter κ > 0. Classical results

then guarantee global well-posedness for this system, and hence we can make the following
definition:

Definition 2.1. For t ≥ s, we define Ss,t : L
2
0(Ω) to be the operator satisfying

Ss,t(θs) = θ(t),

where θ is the unique solution to equation (2.1) with initial data θs.

We now take a moment to standardize the notation used in the remainder of this chapter.
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Definition 2.2 (Norms and function spaces).

1. We define L2(Ω) (abbreviated as L2) to be the space of all square-integrable mean-zero
functions f : Ω → R, equipped with the norm

‖f‖L2 :=

(∫
Ω

|f |2
)1/2

Unless otherwise specified, ‖·‖ will always denote this norm, and 〈·, ·〉 the associated
inner product.
We define L2

0(Ω) (analogously abbreviated as L2
0) as the space of all functions in L2

with mean zero (i.e.
∫
f = 0).

2. For s ∈ R, we define the (inhomogenous) Sobolev space Hs to be the space of all
distributions f such that ‖f‖Ḣs < ∞, where

‖f‖Hs :=

∑
η∈Zd

(
1 + |η|2

)s
f̂(η)

1/2

For s ∈ N, this is precisely the space of distributions with all derivatives of order at
most α in L2.

3. For α ∈ R, we define the homogenous Sobolev space of order α to be the space
of all locally integrable functions f such that ‖f‖Ḣα < ∞, where

‖f‖Ḣα :=

 ∑
η∈Zd\{0}

|η|2α f̂(η)

1/2

=
∥∥(−∆)α/2f

∥∥
If α ∈ N, this is precisely the space of distributions with all derivatives of order α in
L2.

4. For s ≤ t, we let φs,t : Ω → Ω be the dynamical system generated by u; that is, φs,t is
the unique solution to {

∂tφs,t(x) = u (φs,t(x), t) t > s, x ∈ Ω

φs,s(x) = x x ∈ Ω

With this notation established, we are now ready to define the primary objects we’re
interested in studying.

Definition 2.3. The dissipation time associated to the flow generated by u, κ is

τd := inf{t− s | ‖Ss,t(θs)‖ ≤ ‖θs‖
e

∀θs ∈ L2
0, t ∈ R}.
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Intuitively, the dissipation time is the minimum time needed for the variance of any
solution to decrease by a constant fraction (chosen here to be 1/e).
As mentioned previously, even in the absence of advection, it can be shown that τd ≤ O(1/κ),
which, at least heuristically, matches with one’s intuition; given a point source that diffuses
at speed κ, one would expect after time 1/κ that the source has “covered the entire domain,”
and hence has become sufficiently diffused.
Upon introducing an advection or mixing term to the dynamics of this equation, however,
one would naturally expect this timescale to become much faster. Although precise notions
of mixing vary drastically in the literature (see e.g. [5, 4, 6, 3]), for our purposes, we will be
mostly interested in strongly exponentially mixing flows, which we define now.

Definition 2.4. We say a smooth divergence free vector field u is exponentially mixing
if there exists c1, c2 > 0 such that

〈φs,tf, g〉 ≤ c1e
−c2(t−s) ‖f‖Ḣ1 ‖g‖Ḣ1

for all f, g ∈ L2
0.

Remark 2.5. As mentioned above, precise definitions of mixing vary widely throughout the
literature, though most formulations end up being weaker than the one above. We take a
moment to remark on some of these notions:

1. In the general case considered by [1], the authors define α, β flows that are mixing with
rate function h to be velocity fields u that satisfy the condition

〈φs,tf, g〉 ≤ h(t− s) ‖f‖Ḣα ‖g‖Ḣβ

where α, β > 0, f, g are as above and h : R≥0 → R≥0 is a generic decreasing function
vanishing at infinity. In the special case that h is of the form h(x) := c1e

−c2x as above,
it can be shown that our definition above with α = β = 1 is actually equivalent to the
same decay condition for any α, β > 0 (though with a different choice of constants).
Hence in the exponential case, our definition agrees exactly with that of this paper.
Though the results proved in [1] continue to hold in the case of a generic rate function
h, we choose to omit them for the sake of presentation.

2. In [2], a similar setup is considered where the velocity field is required to satisfy the
estimate

‖φs,tf‖Ḣ−1 ≤ h(t− s) ‖f‖Ḣ1

Setting α = β = 1 and dualizing, we see that this definition is then another special case
of the previous item.

3. Finally, in the dynamical systems literature, the notion most commonly considered is
that of being weakly/strongly mixing. Though we defer a precise definition of these
terms to definition 3.11, we note that strong mixing turns out to be exactly equivalent
to the assertion that

‖φs,tf‖Ḣ−1

t→∞→ 0

and hence is the weakest notion out of those considered here (see [5] for a proof of the
fact above).
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2.2 Energy Estimates
With the notation of the previous section established, we turn now to the technical results
and computations that we will need for our main result. Our first result in lemma 2.6
and corollary 2.7 is a simple calculation that allows us to explicitly calculate the rate of
energy decay for solutions to equation (2.1). We then present a standard result that allows
us to estimate the difference between the dynamics with and without diffusion for small
timescales, and use it to prove lemma 2.9, which is the main technical result of this section.

Lemma 2.6 (Energy Estimates). For θ as above, we have the equality

∂t ‖θ(t, ·)‖2L2(Ω) = −2κ ‖θ(t, ·)‖2Ḣ1

which implies that
‖θ(t, ·)‖L2(Ω) ≤ e−λ1κ(t−s) ‖θ(s, ·)‖L2(Ω)

for all s ≤ t, where λ1 denotes the smallest non-zero eigenvalue of ∆.

Proof. Multiplying equation (2.1) by θ and integrating over Ω, we have

∂t ‖θ(·, t)‖2L2(Ω) /2 =

∫
Ω

θ∂tθ =

∫
Ω

−uθ · (∇θ) + κθ∆θ = −
∫

κ ‖∇θ‖2 .

which is precisely the first equality. Applying Poincaré then yields the desired inequality.

Already, the inequality above suffices to show that τd ≤ 1/(λ1κ). In the results that
follow, however, we will also need the following corollary, which follows immediately by
integrating the first equality.

Corollary 2.7 (Energy Equality). For any s ≤ t, we have that

‖θ(t)‖2 = ‖θ(s)‖2 exp

(
−2κ

∫ t

s

‖θ(r)‖2Ḣ1

‖θ(r)‖2
dr

)
.

As mentioned previously, we will also need the following result which allows us to estimate
the difference between the inviscid and viscid dynamics.

Lemma 2.8. Let ϕ : R≥s × Ω → R be given by

ϕ(t) := θs ◦ φs,t

where again φs,t is as in definition 2.2. Then

‖θ(t)− ϕ(t)‖2 6 2
√

2κ(t− s) ‖θs‖
(
2‖∇u‖L∞

∫ t

s

‖θ‖2H1 + ‖θs‖2H1

)1/2

. (2.2)



12 CHAPTER 2. DISSIPATION ENHANCEMENT IN CONTINUOUS TIME

Proof. For notational convenience we assume WLOG that s = 0. Multiplying equation (2.1)
by ∆θ(t) and integrating over space, we deduce that

∂t ‖θ‖2H1 + 2κ ‖θ‖2H2 ≤ 2 ‖∇u‖L∞ ‖θ‖2H1 .

which, upon integrating in time, yields that

2κ

∫ t

0

‖θ‖2H2 ≤ 2 ‖∇u‖L∞

(∫ t

0

‖θ‖2H1

)
+ ‖θ‖2H1 (2.3)

Also we note that
∂t ‖θ − ϕ‖2 = 2κ 〈∆θ, θ − ϕ〉 ≤ 4κ ‖θ‖H2 ‖θ0‖ ,

where the last inequality follows from corollary 2.7, which tells us that the energy is nondecreasing
for both θ and ϕ. Consequently,

‖θ(t)− ϕ(t)‖2 ≤ 4κ ‖θ0‖
∫ t

s

‖θs‖H2 ≤ 2
√
2κt ‖θ0‖

(
2κ

∫ t

s

‖θs‖2H2

)1/2

.

Substituting in equation (2.3) then concludes.

Using this estimate, we can now prove the main technical result of this section.

Lemma 2.9. Let H(κ) ∈ R satisfy√
H(κ)(ln c1 + ln(H(κ)) + ln 2) =

c2

64
√

κ ‖∇u‖L∞

and suppose that λN is the largest eigenvalue of ∆ in [0, H(κ)]. Then if ‖θs‖2Ḣ1 < λN ‖θs‖2
we have the estimate

‖θ (s+ t0)‖2 ≤ exp

(
−κH(κ)t0

8

)
‖θs‖2

where
t0 := 2 (ln c1 + ln (2λN)) /c2.

Proof. Again for the sake of clarity we assume that s = 0. In light of corollary 2.7 and the
inequality 1− x ≤ e−x, it suffices to show that∫ t0

0

‖θ(t)‖2Ḣ1 dt ≥
λN t0 ‖θ0‖2

8

since for κ � 1, λN ≥ H(κ)/2 by Weyl’s lemma, and hence this will imply

‖θ(t0)‖2 ≤
(
1− 2κλN t0

8

)
‖θ0‖2 ≤ exp

(
−κH(κ)t0

8

)
‖θ0‖2 .

To do so, suppose towards a contradiction that the opposite inequality holds, e.g. that∫ t0

0

‖θ(t)‖2Ḣ1 dt <
λN t0 ‖θ0‖2

8
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Then∫ t0

0

‖θ(t)‖2Ḣ1 dt ≥ λN

∫ t0

t0/2

‖(I − PN) θ(t)‖2 dt

≥ λN

2

∫ t0

t0/2

‖(I − PN)ϕ(t)‖2 dt− λN

∫ t0

t0/2

‖(I − PN) (θ(t)− ϕ(t))‖2 dt

≥ λN t0
4

‖θ0‖2 −
λN

2

∫ t0

t0/2

‖PNϕ(t)‖2 dt− λN

∫ t0

0

‖θ(t)− ϕ(t)‖2 dt

where PN denotes the projection operator onto the first N eigenvalues of ∆. Using the fact
that u is exponentially mixing, we can control the second term in the final expression by∫ t0

t0/2

‖PNϕ(t)‖2 dt ≤ λN

∫ t0

t0/2

‖ϕ(t)‖2Ḣ−1 dt ≤ λN

∫ t0

t0/2

(c1e
−c2t)2 ‖θ0‖2Ḣ1 dt

≤ t0
2
λN

(
c1e

−c2t0
)2 ‖θ0‖2Ḣ1 ≤

t0
2
λ2
N

(
c1e

−c2t0
)2 ‖θ0‖2 .

Finally, using lemma 2.8, we can control the last term by∫ t0

0

‖θ(t)− ϕ(t)‖2 dt ≤
∫ t0

0

2
√
2κt ‖θ0‖

(
2 ‖∇u‖L∞

∫ t

0

‖θ‖2H1 + ‖θ0‖2H1

)1/2

dt

≤ 2
√
2κt

3/2
0 ‖θ0‖

(
2‖∇u‖L∞

∫ t0

0

‖θ‖2H1 dt+ ‖θ0‖2H1

)1/2

≤ 2
√
2κt

3/2
0 ‖θ0‖2

(
‖∇u‖L∞λN t0

4
+ λN

)1/2

.

Plugging in these estimates, our choice of t0, and dividing by λN t0 ‖θ0‖2 yields

1

8
>

1

4
− 1

16
− 2
√
‖∇u‖L∞κλN t0

which contradicts our choice of t0, finishing the proof.

2.3 Exponentially Mixing Flows
With the previous calculations in hand, we are now ready to prove the main theorem of this
chapter.

Theorem 2.10. Suppose that u is a smooth, divergence free, and exponentially mixing
velocity field. Then for κ � 1, the dissipation time of the associated advection-diffusion
equations is bounded by

τd ≤
18

κH(κ)
≤ C(ln κ)2

where H(κ) is as in lemma 2.9.
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Proof. First note that H(κ) ≤ O
(

1

κ |lnκ|2

)
for κ � 1, so it suffices to prove the first

inequality.
Towards doing so, let λN be as in lemma 2.9, and note that if ‖θ(t)‖2Ḣ1 ≥ λN ‖θ(t)‖2 for
t ∈ [s, t0], then

‖θ(t)‖2 ≤ exp(−2κλN(t− s)) ‖θs‖2

for all s ≤ t ≤ t0.
Using this observation together with lemma 2.9 allows us to find t′1 < t′2 < · · · increasing to
infinity such that

‖θ (t′k)‖
2 ≤ exp

(
−κH(κ) (t′k − s)

8

)
‖θs‖2 , and t′k+1 − t′k ≤ t0.

This immediately implies
τd ≤

16

κH(κ)
+ t0

By our choice of λN and t0, we know that t0 ≤ 1/ (κλN) ≤ 2/ (κH(κ)) for κ � 1, which
shows the first inequality as desired.



Chapter 3

Dissipation Enhancement in Discrete
Time

We turn our attention now to the phenomenon of dissipation enhancement in discrete time,
which we aim to understand through the lens of probability and mixing times rather than the
more dynamical approach of chapter 2. In doing so, we will adopt a slightly different model
of the underlying processes, separately splitting the “advection” and “diffusion” terms of the
last chapter into the Markov processes covered in section 3.1 and the dynamical systems
defined in section 3.2. After reviewing several classical results in these fields, we will then
provide several motivating examples for the types of systems we are interested in studying,
which will then lead us to our discussion of the symbolic dynamics and its connection to
these systems in sections 3.4 and 3.5. We conclude in section 3.6 with the proof of our main
result in this chapter.

3.1 Markov Processes and Mixing
We begin with a brief review of some basic properties of Markov processes, which serve as
the analogue of the diffusion processes seen in chapter 2. Although we will be primarily
interested in studying the functional dynamics of such operators (e.g. their characteristics
when viewed as linear maps between Lp spaces), we include for completeness the standard
probabilistic definitions of these processes.
Below, M is always taken to be a complete separable metric space, with all associated
measures being associated with the Borel sigma-algebra B(M).

Definition 3.1. We denote by Mb(M) the vector space of all finite signed measures on M ,
equipped with the total variation norm

‖µ‖TV := |µ| (M).

We define Mp(M) ⊆ Mb(M) to be the space of all probability measures on M .

Definition 3.2. A Markov transition kernel K on M is a function K : M ×B(M) → [0, 1]
such that

15
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• For any fixed A ∈ B(M), K(·, A) is measurable,

• and for any fixed x ∈ M,K(x, ·) is a probability measure on M .

Given any such kernel, we can naturally extend it to a continuous linear map K : Mb(M) →
Mb(M) via the action

Kµ(A) :=

∫
M

K(x,A)µ(dx)

and to a linear map between measurable functions via

Kf(x) :=

∫
M

f(y)K(x, dy).

Given two kernels K,L, we define their product K ⋆ L (often abbreviated KL) via

K ⋆ L(x,A) = KL(x,A) :=

∫
K(x, dy)L(y, A)

and similarly, we define exponentiation of a kernel K as

Kn := K ⋆K ⋆ · · · ⋆ K︸ ︷︷ ︸
n times

.

Definition 3.3. Given a probability space (Ω,F ,P) a sequence of M-valued adapted random
variables {Xi}i∈N is a Markov Process with transition kernel K if there exists a sequence of
i.i.d. uniform [0, 1] random variables {Ui}i∈N and a measurable function f : M × [0, 1] → M
such that

• f(x, U1) is equal in law to K(x, ·) for all x ∈ M ,

• and we have the identity Xi+1 = f(Xi, Ui) for all i ∈ N.

Note as a consequence of the definition above that we will always have

µXi+1
= KµXi

where µX denotes the law of X, and that if {Xi} has transition kernel KL, then

µXi+1
= KLµXi

= K(LµXi
).

Although general Markov processes can behave arbitrarily poorly, for our purposes, we will
typically require that K is sufficiently regular to admit a unique stationary measure, e.g.,
that there exists a unique probability measure π satisfying Kπ = π.
In particular, we will typically posit that K(x, ·) can be identified with a function in L1(π)∩
L∞(π) via it’s Radon-Nikodym derivative, which, under some mild symmetry assumptions,
already guarantees existence, and that the operator K restricted to L2(π) admits a spectral
gap, which will guarantee uniqueness.
Although we will not make extensive use of it here, the following fact is often helpful when
dealing with Markov operators from the functional analytic perspective:
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Theorem 3.4. Let K be a Markov transition kernel, and π be an invariant measure. Then
K restricts to a contraction of Lp(π) for all 1 ≤ p ≤ ∞, e.g. ‖Kf‖Lp(π) ≤ ‖f‖Lp(π) for all
f ∈ Lp(π).

Proof. Applying Jensen’s inequality for 1 ≤ p < ∞, we have that

‖Tf‖pLp(π) =

∫
M

∣∣∣∣∫
M

f(y)K(x, dy)

∣∣∣∣p dπ(x) ≤ ∫
M

∫
M

|f(y)|p K(x, dy)dπ(x)

=

∫
M

|f(y)|p d(Kπ)(y) =

∫
M

|f(y)|p dπ(y) = ‖f‖pp

The result for p = ∞ is obvious.

For completeness, however, we briefly record two more general criteria that also guarantee
existence and uniqueness of a stationary measure:

Theorem 3.5 (Convergence to Stationary). Suppose that K is a kernel and that there exists
a probability measure φ such that either

• [Strong φ recurrence]: For all x ∈ X and all A ∈ B(M) with φ′(A) > 0, there
exists Nx,A such that such that Kn(x,A) > 0 for all n ≥ Nx,A.

• [Lower bounded transition probabilities] or that there exists ε > 0, such that

K(x,A) ≥ εφ(A) ∀x ∈ M,A ∈ B(M).

Then there exists a unique stationary measure π for K such that

‖Knµ− π‖TV → 0 as n → ∞

for all µ ∈ Mp.

Proof. This is precisely the content of theorems 1 and 2 in [7].

In light of the convergence criterion identified above, we can now define the mixing time
of a Markov kernel, which is exactly the analogue of the dissipation time in the previous
chapter.

Definition 3.6. Given a Markov kernel K with unique stationary measure π, we define the
mixing time τmix of K to be

τmix := sup
µ∈Mp

inf
n∈N

‖Knµ− π‖TV ≤ 1/e.

As in the continuous time case, the mixing time is the minimum time needed for the
deviation of any initial probability distribution from stationary to decrease by a constant
fraction (chosen here to be 1/e).

Though more commonly used in the analysis of discrete space Markov chains, we will
also find techniques from the theory of coupling extremely helpful, which we present now.
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Definition 3.7. Given two probability distributions µ, ν on M , a coupling of µ, ν, is a pair
of random variables (X,Y ) defined on a common probability space such that their marginal
distributions are precisely µ and ν.

The following proposition then establishes a natural connection between the total variation
norm and coupling.

Proposition 3.8.
‖µ− ν‖TV = min

X,Y a coupling of µ,ν
P(X 6= Y )

Using this, we can establish a link between mixing times and Markovian couplings, which
we define now.

Definition 3.9. Given two probability distributions µ, ν on M and a Markov transition
kernel K, a Markovian coupling of the process K is a sequence of random variables
{(Xi, Yi)}i∈N defined on a common probability space such

1. (X0, Y0) is a coupling of µ, ν,

2. {Xi} and {Yi} are Markov processes with transition kernel K,

3. and {Xi = Yi} ⊆ {Xi+1 = Yi+1}.

Although most authors only insist on (1) and (2) in their definitions of a Markovian coupling,
in practice nearly all such couplings will satisfy (3), so we include it here.
Under this assumption, we can also define

τcouple := inf{t ∈ N | Xt = Yt}.

Theorem 3.10. For a Markov transition kernel K, the associated mixing time satisfies

τmix ≤ 8 sup
µ,ν∈Mp

inf E(τcouple)

where the inf is taken over all Markovian couplings of µ, ν.

3.2 Dynamical Systems
We now review some basic definitions from the field of dynamical systems, which play the
role of advection in our new setting.
Recall that a dynamical system is a measure space (M,F , π) equipped with a measure-
preserving T : X → X.
Note also that each dynamical system T naturally induces a Markov transition kernel KT

on M via
KT (x, ·) := δT (x)

Abusing notation slightly, we will use T and KT interchangeably in the remainder of this
document. As in the previous chapter, we first begin by introducing the relevant notions of
ergodicity that we’ll be interested in throughout.



3.3. EXAMPLES 19

Definition 3.11. A dynamical system T is said to be strongly mixing if, for all A,B ∈ F
that

lim
n→∞

µ(T−n(A) ∩ B) = µ(A)µ(B).

As mentioned in remark 2.5, this notion turns out to be exactly equivalent to decay of
the H−1 norm from the previous chapter.
While this condition already suffices to generate a number of interesting dynamical properties,
again, we will primarily be interested in more quantitative restrictions on ergodicity, such as
the one below.

Definition 3.12. A dynamical system T is exponentially mixing if, there exists c1, c2 > 0
and k ∈ N such that ∣∣∣∣∫ fg ◦ T n −

∫
f

∫
g

∣∣∣∣ ≤ c1e
−c2n ‖f‖Ck ‖g‖Ck

for all f, g ∈ Ck.

3.3 Examples
We now consider some particularly nice examples of the systems we are interested in studying,
which henceforth will be given by interleaving a mixing dynamical system and a Markov
process. Though the examples given here are chosen to admit particularly elegant and
elementary proofs, it should be noted that the methods used are extremely sensitive to the
exact dynamics being used, and break almost immediately if e.g. the noise kernel is slightly
asymmetrized.
The first example considered here is almost an exact analogue of the advection-diffusion
system considered in the last chapter, motivated by the fact that the heat equation admits
a fundamental solution:

Proposition 3.13 (Doubling Map). Let T := R/Z, and T : T → T be given by x 7→ 2x.
For κ > 0, let Kκ be the transition kernel corresponding to the operator e−κ∆, and consider the
Markov transition kernel given by TKκ. Then the Lebesgue measure is the unique invariant
measure of this system with τmix ≤ C |lnκ|.

Proof. For the sake of consistency, denote by π the Lebesgue measure, which is clearly
invariant. Now observe that

T̂ f(k) = f̂(k/2), K̂κf(k) = e−κk2 f̂(k) ∀f ∈ L2

Where we understand f̂(k/2) to be 0 when k is odd. Using Parseval, this immediately implies∥∥(TKκ)
n+1(f − 1)

∥∥
L2 ≤ e−κ2n ‖f − 1‖L2

for all f with mean 1.
Now note that

Kκ : Mp → {fdπ | {‖f‖L1 = 1}
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and also that
‖Kκ‖L1→L2 ≤ C/κ

by Young’s inequality. This implies that∥∥(KPκ)
n+2(µ− π)

∥∥
TV

≤ Ce−κ2n/κ

which suffices.

In the previous example, our general approach was to use purely analytic techniques to
bound the dissipation time, then to use a key L1 to L2 estimate to convert this into a mixing
time bound, establishing a connection between the two.
Although we won’t discuss it further in this document, it should be noted that similar
techniques can also be used to bound the dissipation time in terms of the mixing time,
though such bounds naturally remain suboptimal.

Proposition 3.14 (Doubling Map with Uniform Noise). Let T, T be as in the previous
theorem, and for n ∈ N, let κn := 2−n−1 and Kn be the transition kernel given by

Kn(x,A) = π(A ∩ [x− κ, x+ κ])/2κ

where again π denotes the Lebesgue measure. Then the Markov transition kernel given by TKκ

has the Lebesgue measure as its the unique invariant measure with τmix ≤ 2n = O(|lnκ|).

Proof. A direct calculation yields that (KPn)
2nµ = π for any µ ∈ Mp, which clearly suffices.

As already noted above, though these two bounds admit particularly nice proofs, the
techniques used to obtain them are rather brittle, and fail if e.g. the noise is not chosen to be
homogeneous over space. Reframing these examples in the framework of sections 3.4 and 3.5,
in section 3.6, we will return to these examples and show how our main result can be used
to obtain analogous bound on asymmetrized analogues of these systems.

Proposition 3.15. Let M := T2 and T : T2 → T2 be the dynamical system given by

(0.x1x2 · · · , 0.y1y2 · · · ) 7→ (0.x2 · · · , 0.x1y1y2 · · · ),

where 0.x1x2 · · · denotes the binary expansion of x ∈ [0, 1).
For N ∈ N, let KN be the transition kernel associated to the process

Xi+1 = Xi + 2−N Unif[−1, 1]

Then the Lebesgue measure is the unique invariant measure of the kernel TPN with associated
mixing time τmix ≤ CN .

We defer a proof of this particular bound to section 3.6.
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3.4 Symbolic Dynamics
We now take a brief digression to investigate properties of a particular class of dynamical
systems known as Bernoulli systems.

Let M ∈ N, and p1, . . . , pM ∈ [0, 1] be such that
∑

pi = 1. We then set Ω = {1, . . . ,M}Z
to be our sample space, and given n ≤ m ∈ Z and x ∈ Ω, we define the cylinder set

Cn,m,ω := {η ∈ Ω | ηi = ωi for all i ∈ [n,m]} .

Now let B be the σ-algebra generated by all cylinder sets, and let µ be the associated
Bernoulli measure defined by

µ(Cn,m,ω) =
m∏
i=n

pωi
.

Definition 3.16. The Bernoulli shift on (Ω,B, µ) is the dynamical system defined by

(Tω)n = ωn+1 .

Lemma 3.17 (Mixing). The Bernoulli shift is strongly mixing.

Proof. Our aim is to show that for any two measurable sets A,B we have

lim
n→∞

µ(T−nA ∩ B) = µ(A)µ(B) .

Approximating by finite unions of cylinder sets, it is enough to show this when A,B are
both cylinder sets, and so we now assume A = Cn,m,ω and B = Ck,l,η. In this case, when
n > 10max{|n| , |m| , |k| , |l|} we have

T−nCn,m,ω ∩ Ck,l,η = {ζ ∈ Ω | ζi = ηi for i ∈ [k, l] , and ζj+n = ωj , for j ∈ [n,m]} .

and hence
µ(T−nCn,m,ω ∩ Ck,l,η) = µ(Cn,m,ω)µ(Ck,l,η) , for all n > k .

3.5 Systems isomorphic to Bernoulli shifts
We now let M be a Riemannian manifold, and φ : M → M be a volume preserving dynamical
system.

Definition 3.18. We say φ is Bernoulli if there exists a Bernoulli shift (Ω,B, µ) and a
bijective, measure preserving π : M → Ω such that

π ◦ φ = T ◦ π ,

where T is the shift operator on Ω. In other words, we have that the following diagram
commutes

M M

Ω Ω

π

φ

π

S
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If φ is Bernoulli, then let
Ai = π−1(C1,1,i) .

where i denotes the constant sequence. The sets A1, . . . , AN form a partition of M and are
called a Bernoulli partition. Note that for any x ∈ M we have

φn(x) ∈ Ai ⇐⇒ π(x)n = i .

Thus, one can think of the map π as identifying every point x with its orbital history
(a0, a1, . . . ), where ai = j if and only if φi(x) ∈ Aj. For convenience, define

An,m,x = π−1Cn,m,π(x) ⊆ M ,

to be the inverse image of the cylinder sets.
In light of lemma 3.17, it’s clear that any Bernoulli system is mixing. The converse, however,
is false and there are well known examples of mixing dynamical systems that are not Bernoulli.
Recently, in a breakthrough result, Dolgopyat et al. proved a longstanding conjecture showing
that (sufficiently regular) exponentially mixing dynamical systems must be Bernoulli:

Theorem 3.19 (Proved in [3]). If T is an exponentially mixing C1+α diffeomorphism, then
it is isomorphic to a Bernoulli system.

Given the universality result quoted above, then, a natural next question to ask is whether
or not information from the perspective of symbolic dynamics can be parlayed into improved
mixing bounds on the original dynamical system. Perhaps unsurprisingly, the answer is yes,
though to formulate our result we first need a notion of a mixing rate in the context of
Bernoulli systems.

Definition 3.20. Given a manifold M , a map π : M → Ω as above, and a decreasing
function h : N → R which vanishes at infinity, we say that the Bernoulli map φ is mixing
with rate function h if

sup
x∈M

diam(A−N,N,x) ≤ h(N)

for all N ∈ N. In the case h(n) = c1e
−c2n we say that φ is exponentially mixing.

Remark 3.21. If we assume that the Bernoulli partition is sufficiently regular and φ is
mixing with rate h in the sense of Definition 3.20, then φ is also mixing in the sense of
Remark 2.5.

3.6 Geometric Coupling
We are now ready to proceed to our main result. Although we defer a precise statement
of the conditions we need to definition 3.22, we provide here a heuristic motivation for the
definitions that follow.
In chapter 2 and the previous examples, our primary interest was in the asymptotic behavior
of τd and τmix as a function of the diffusivity parameter κ, which roughly captured the “length
scale” of our noise kernel. In order to to effectively transfer this information to the side of the
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symbolic dynamics, using our assumption of h-fineness, we will want to choose a parameter
N such that for every x ∈ M , there exists a finite collection of cylinder sets A−N,N,xi

with the
associated uniform measure “well approximating” the kernel K(x, ·), which will then allow
us to couple in expected O(N) time.

With this in mind, we can now precisely state our necessary assumptions. Recall also
that for a signed measure µ, we write µ+, µ− to denote the positive and negative parts of µ
respectively, and for positive measures µ, ν, we set

µ ∧ ν := µ− (µ− ν)+

Definition 3.22. Let K be a Markov transition kernel on (Ω,B) and fix N ∈ N. We say
that K has resolution N if there exists c1, c2 > 0 such that all of the following hold for
arbitrary ω, η ∈ Ω:

1. [High frequency coupling] There exists a bijective Hω,η : Ω → Ω such that

(Hω,η ⋆ K(ω, ·) ∧K(η, ·))(Ω) ≥ c1

and Hω,η(γ)i = γi for all i ≥ N, γ ∈ Ω.

2. [Closeness] If ωi = ηi for all i ≥ −N , then

(K(ω, ·) ∧K(η, ·))(Ω) ≥ c2.

3. [Homogenity] For all −N ≤ m ≤ N , there exists a bijective Mm,ω,η : Ω → Ω such
that if ωi = ηi for all i ≥ m,

Mm,ω,η ⋆ K(ω, ·) = K(η, ·)

and M(γ)i = γi for all i ≥ m, γ ∈ Ω.

Roughly speaking, the first condition above imposes a “scale condition” on the noise that
forces it to be approximately uniform when restricting it’s action to only those coordinates
with index ≥ N , which will be key in allowing us to couple these higher-order bits. The third
homogeneity condition As mentioned previously, the conditions are intentionally stated in
as abstract a form as possible; in practice, conditions like the one below are typically easier
to check.

Proposition 3.23. If on M , the kernel K satisfies

K(x, ·) ≥ α
1

µB(x, κ)
χB(x,κ)dµ

for some α > 0, then it satisfies the first two assumptions above for any N with h(N) ≤ κ/2.

Proof. We show that the first item holds, fixing x, y ∈ M and N as above. First note that
A−N,N,x ⊆ B(x, κ), A−N,N,y ⊆ B(y, κ), hence we can choose Hπ(x),π(y) to simply be the map
sending π(x) → π(y) that acts trivially on all coordinates greater than N in absolute value.
On the other hand, to show that the second item holds, we can note that π(x)i = π(y)i for
all i ≥ −N implies that d(x, y) < κ/2, upon which the conclusion is immediate.
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With these definitions out of the way we are now ready to prove our main result.
Theorem 3.24. If K is as in definition 3.22, then the Markov transition kernel given by
K ⋆ P satisfies

τmix ≤ 16N/(c1c2).

Proof. In light of theorem 3.10, it suffices to construct a coupling of any two initial probability
distributions µ, ν that couples in expected 2n/(c1c2) time. We will do so first under the
assumptions that µ, ν are given by delta masses at some ω0, η0 ∈ Ω; it will be clear from the
construction that this is no loss of generality. For convenience, we set

Hi := (Hωi,ηi ⋆ P (ωi, ·) ∧ P (ηi, ·)) ∈ Mb(Ω).

Our construction is as follows, viewing the following as an iterative process to construct the
sequences {ωi}i∈N, {ηi}i∈N:

1. Draw U ∼ Unif[0, 1]. If U ≤ Hi(Ω), sample η proportionally to Hi, and set
ηi+1 := Tη, ωi+1 = TS−1

ωi,ηi
(ηi+1).

Otherwise, draw ωi+1, ηi+1 from T (P (ωi) − S−1
ωi,ηi

⋆ P (ηi, ·))+ and T (Sωi,ηi ⋆ P (ωi, ·) −
P (ηi, ·))+ respectively. Repeat until the former case occurs.

2. For the next N steps, sample ω from K(ωi, ·), and set
ωi+1 = T (ω)ηi+ 1 = Mm,ωi,ηi(ω).

3. Draw U ∼ Unif[0, 1]. If U ≤ (K(ωi, ·) ∧K(ηi, ·))(Ω), sample ηi+1 = ωi+1 proportional
to the measure K(ωi, ·) ∧K(ηi, ·), and henceforth set ω, η to be equal.
Otherwise, draw ωi+1, ηi+1 from (K(ωi, ·)−K(ηi, ·))+ and (K(ωi, ·)−K(ηi, ·))+ respectively,
and return to the first step.

Now note that if the former case occurs in step three, the two processes have coupled, and
that we reach this step in at most expected 2n/(c1c2) time as desired.

We now prove proposition 3.15.

Proof of proposition 3.15.

Upon making the identification of each (a, b) ∈ T2 with the bi-infinite sequence · · · b2b1a1a2 · · ·,
it’s easy to see that φ is Bernoulli with Bernoulli partition given by dyadic rectangles.
It therefore suffices to check the conditions in Definition 3.22. By Proposition 3.23, we know
that K satisfies items 1 and 2, so it suffices to check homogeneity, which we can do by simply
setting

Mm,x0,y0(x) := x+ (y0 − x0)

which concludes.
Theorem 3.25 (Shifted Bernoulli Shift). Let T be as above and KN be the transition kernel
associated to the process

Xi+1 = Xi + 2−N Unif[−1, 1] + ε

Then the Lebesgue measure is the unique invariant measure of the kernel TPN with associated
mixing time τmix ≤ CN .
Proof. The same construction as above works.
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